题意:给n个数(n<=200000),每个数的绝对值不超过(10^6),有m个查询(m<=200000),每次查询区间[a,b]中连续的没有相同数的的最大长度。
析:由于n太大,无法暴力,也承受不了O(n*n)的复杂度,只能是O(nlogn),首先是用f[i] 表示每个数 i 为左端点,向右可以最多到达的点为f[i],
那么这个dp很好转移,f[i] = max(f[i+1], last[a[i]]),其中last数组是用来记录上次序列数中a[i]的出现的位置。
那么对于给定的区间[l, r] g[i] = min(r, f[i]) - i + 1,而答案为 ans = max{ g[i] l <= i<= r}。这样复杂度也太大,我们从f上下手、
f 数组 一定是非降序的,所以一定存在一个位置pos,
当 i < pos 时,g[i] = f[i] - i + 1,这个我们可以用rmq 来维护最大值。
当 i >= pos 时,g[i] = r - i + 1,这个我们可以直接求出。
对于pos我们可以用二分快速求出,利用 f 的单调性。总时间复杂度就是 O(nlogn)。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-5; const int maxn = 2e5 + 10; const int mod = 1e6 + 10; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int f[maxn], last[mod*3]; struct Rmq{ int dp[maxn][30]; void init(int *a){ for(int i = 0; i < n; ++i) dp[i][0] = a[i] - i + 1; for(int j = 1; (1<<j) <= n; ++j) for(int i = 0; i + (1<<j) <= n; ++i) dp[i][j] = max(dp[i][j-1], dp[i+(1<<(j-1))][j-1]); } int query(int l, int r){ int k = log(r-l+1.0) / log(2.0); return max(dp[l][k], dp[r-(1<<k)+1][k]); } }; Rmq rmq; int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 0; i < n; ++i){ scanf("%d", a+i); a[i] += mod; last[a[i]] = n; } f[n-1] = n-1; last[a[n-1]] = n-1; for(int i = n-2; i >= 0; --i){ f[i] = min(f[i+1], last[a[i]]-1); last[a[i]] = i; } rmq.init(f); while(m--){ int l, r; scanf("%d %d", &l, &r); int pos = lower_bound(f+l, f+n, r) - f; int ans = r - pos + 1; --pos; if(pos > l) ans = max(ans, rmq.query(l, pos)); printf("%d\n", ans); } } return 0; }