题意:给定一个n*m的矩阵,#表示不能走,.表示能走,让你求出最长的一条路,并且最多拐弯一次且为90度。
析:DP,dp[i][j][k][d] 表示当前在(i, j)位置,第 k 个方向,转了 d 次变的最多次数,然后用记忆化搜索就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 5; const int mod = 1e9 + 7; const int dr[] = {0, 1, 0, -1, -1, 1, 1, -1}; const int dc[] = {1, 0, -1, 0, 1, 1, -1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn][10][2]; char s[maxn][maxn]; int dfs(int r, int c, int d, int num){ int &ans = dp[r][c][d][num]; if(ans >= 0) return ans; ans = 1; int x = r + dr[d]; int y = c + dc[d]; if(is_in(x, y) && s[x][y] == '.') ans = Max(ans, dfs(x, y, d, num) + 1); if(d < 4 && !num){ x = r + dr[(d+1)%4]; y = c + dc[(d+1)%4]; if(is_in(x, y) && s[x][y] == '.') ans = Max(ans, dfs(x, y, (d+1)%4, 1) + 1); x = r + dr[(d+3)%4]; y = c + dc[(d+3)%4]; if(is_in(x, y) && s[x][y] == '.') ans = Max(ans, dfs(x, y, (d+3)%4, 1) + 1); } else if(!num){ int t = (d + 1) % 8; if(t < 4) t += 4; x = r + dr[t]; y = c + dc[t]; if(is_in(x, y) && s[x][y] == '.') ans = Max(ans, dfs(x, y, t, 1) + 1); t = (d + 3) % 8; if(t < 4) t += 4; x = r + dr[t]; y = c + dc[t]; if(is_in(x, y) && s[x][y] == '.') ans = Max(ans, dfs(x, y, t, 1) + 1); } return ans; } int main(){ while(scanf("%d", &n) == 1 && n){ for(int i = 0; i < n; ++i) scanf("%s", s+i); memset(dp, -1, sizeof dp); m = n; int ans = 0; for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) if(s[i][j] == '.') for(int k = 0; k < 8; ++k) ans = Max(ans, dfs(i, j, k, 0)); printf("%d\n", ans); } return 0; }