题意:给定一个 x, k, t,你有两种操作,一种是 x - i (0 <= i <= t),另一种是 x / k (x % k == 0)。问你把x变成1需要的最少操作。
析:这肯定是DP,也想到可能是单调队列,但是不会啊。。。。就是胡搞了一发,虽然AC了,但是效率极低,比用单调队列少10倍。
dp[i] 表示把 i 变成 1,要用的最少步骤,然后每次取最优。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2}; const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn]; int q[maxn]; int solve(int k, int x){ int cnt = 0; while(x){ x /= k; ++cnt; } return cnt-1; } int main(){ int T; cin >> T; while(T--){ int x, k, t; scanf("%d %d %d", &x, &k, &t); if(k == 1){ printf("%d\n", (x-1)%t == 0 ? (x-1)/t : (x-1)/t+1); continue; } else if(!t){ printf("%d\n", solve(k, x)); continue; } dp[1] = 0; q[1] = 1; int l = 1, r = 1; for(int i = 2; i <= x; ++i){ while(q[l] < i-t) ++l; dp[i] = dp[q[l]] + 1; if(i % k == 0) dp[i] = Min(dp[i], dp[i/k]+1); while(l <= r && dp[q[r]] >= dp[i]) --r; q[++r] = i; } printf("%d\n", dp[x]); } return 0; }