题意:给有三种操作,一种是 1 k d,把第 k 个数加d,第二种是2 l r,查询区间 l, r的和,第三种是 3 l r,把区间 l,r 的所有数都变成离它最近的Fib数,
并且是最小的那个。
析:觉得应该是线段树的,但是。。。不会啊。。。就想胡搞一下。
所以用了树状数组,也就是和的,然后用一个set来维护每个不是Fibnoccia的数,然后再进行计算。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2}; const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL sum1[maxn<<1], a[maxn]; LL F[150]; int cnt; set<int> sets; set<int> :: iterator it; int lowbit(int x){ return x & (-x); } void add1(int x, LL d){ while(x <= n){ sum1[x] += d; x += lowbit(x); } } LL qurey1(int x){ LL ans = 0; while(x > 0){ ans += sum1[x]; x -= lowbit(x); } return ans; } void solve(int l, int r){ it = sets.lower_bound(l); while(it != sets.end() && *it <= r){ LL *tmp = lower_bound(F+1, F+cnt, a[*it]); if(a[*it] == *tmp){ sets.erase(it++); continue; } LL *tmpp = tmp - 1; if(*tmp - a[*it] >= a[*it] - *tmpp){ add1(*it, *tmpp - a[*it]); a[*it] = *tmpp; sets.erase(it++); } else{ add1(*it, *tmp - a[*it]); a[*it] = *tmp; sets.erase(it++); } } } int main(){ F[0] = F[1] = 1; cnt = 2; while(1){ F[cnt] = F[cnt-1] + F[cnt-2]; if(F[cnt] > (1LL<<61)) break; ++cnt; } ++cnt; while(scanf("%d %d", &n, &m) == 2){ sets.clear(); for(int i = 0; i <= n; ++i){ sum1[i] = a[i] = 0; sets.insert(i); } int l, r, x; for(int i = 0; i < m; ++i){ scanf("%d", &x); if(1 == x){ scanf("%d %d", &l, &r); a[l] += r; sets.insert(l); add1(l, (LL)r); } else if(2 == x){ scanf("%d %d", &l, &r); printf("%I64d\n", qurey1(r) - qurey1(l-1)); } else if(3 == x){ scanf("%d %d", &l, &r); solve(l, r); } } } return 0; }