题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种。
析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是行和列的,然后再算对角线,对角线是从2-min(m, n)的,
然后就能算出来。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e2 + 100; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline int gcd(int a, int b){ return b ? gcd(b, a%b) : a; } inline int lcm(int a, int b){ return a * b / gcd(a, b); } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int main(){ LL n, m; while(cin >> m >> n && m+n){ if(m > n) swap(m, n); cout << (m*n*n+m*m*n) - m*n*2 + ((m*(m-1)*(2*m-1))/6-1-(m+1)*(m-2)/2)*4 + m*(m-1)*(n-m+1)*2 << endl; } return 0; }