题意:给定一个序列,然后让你删除一段连续的序列,使得剩下的序列中连续递增子序列最长。
析:如果暴力枚举那么时间复杂度肯定受不了,我们可以先进行预处理,f[i] 表示以 i 结尾的连续最长序列,g[i] 表示以 i 开头的连续最长序列,然后再去找最长的,
枚举 i,然后用set来维护一个单调上升的序列,我们把已经扫过的用set处理,按a[i]从小到大排序,然后f[i]也是从小到大,把不是最优的解全删掉,从而减少的要遍历的数目。
然后动态处理每个值。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 2e5 + 5; const LL mod = 1e3 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int g[maxn], f[maxn]; struct Node{ int id, num; Node(int i, int n) : id(i), num(n) { } bool operator < (const Node &p) const{ return id < p.id; } }; set<Node> sets; set<Node> :: iterator it; int main(){ int T; cin >> T; while(T--){ sets.clear(); scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%d", a+i); f[0] = 1; for(int i = 1; i < n; ++i) if(a[i] > a[i-1]) f[i] = f[i-1] + 1; else f[i] = 1; g[n-1] = 1; for(int i = n-2; i >= 0; --i) if(a[i] < a[i+1]) g[i] = g[i+1] + 1; else g[i] = 1; int ans = f[0] + g[0] - 1; sets.insert(Node(a[0], 1)); for(int i = 1; i < n; ++i){ Node u(a[i], f[i]); it = sets.lower_bound(u); bool ok = true; if(it != sets.begin()){ --it; ans = Max(ans, g[i] + it->num); if(it->num >= f[i]) ok = false; } if(ok){ sets.erase(u); while(it != sets.end() && it->id > a[i] && it->num <= f[i]) sets.erase(it++); sets.insert(u); } } printf("%d\n", ans); } return 0; }