题意:给定两个加血的方式,一个是直接加多少,另一种是加百分之几,然后你能够你选 k 种,问你选哪 k 种。
析:首先肯定要选加的多的,所以我们先排序,从大到小,然后用前缀和存储一下,再去枚举从第一种和从第二种选 i 个,从另一个中选 k-i的,
注意这个 k 可能大于 m+n,讨论一下。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 50000 + 5; const LL mod = 1e3 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int num, id; bool operator < (const Node &p) const{ return num > p.num; } }; Node a[maxn], b[maxn]; LL sum1[maxn], sum2[maxn]; void print(int n, Node *a){ for(int i = 1; i <= n; ++i) if(1 == i) printf("%d", a[i].id); else printf(" %d", a[i].id); printf("\n"); } int main(){ freopen("buffcraft.in", "r", stdin); freopen("buffcraft.out", "w", stdout); int base, k; while(scanf("%d %d %d %d", &base, &k, &n, &m) == 4){ for(int i = 1; i <= n; ++i){ scanf("%d", &a[i].num); a[i].id = i; } for(int i = 1; i <= m; ++i){ scanf("%d", &b[i].num); b[i].id = i; } if(k >= m + n){ printf("%d %d\n", n, m); print(n, a); print(m, b); continue; } sort(a+1, a+n+1); sort(b+1, b+m+1); sum1[0] = sum2[0] = 0; for(int i = 1; i <= n; ++i) sum1[i] = sum1[i-1] + a[i].num; for(int i = 1; i <= m; ++i) sum2[i] = sum2[i-1] + b[i].num; LL ans = 0; int idx = 0; for(int i = 0; i <= n && i <= k; ++i){ if(m < k - i) continue; LL tmp = (base + sum1[i]) * (100 + sum2[k-i]); if(tmp > ans){ ans = tmp; idx = i; } } for(int i = 0; i <= m && i <= k; ++i){ if(n < k - i) continue; LL tmp = (base + sum1[k-i]) * (100 + sum2[i]); if(tmp > ans){ ans = tmp; idx = -i; } } if(idx < 0) idx += k; printf("%d %d\n", idx, k - idx); print(idx, a); print(k - idx, b); } return 0; }