Description
在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。
Input
有多组输入数据。每组第一行输入三个整数n、m、c(1<=n,m,c<=100000),分别代表城市数量,可建道路数量和单位长度道路修建费用。接下来m行每行三个整数u、v(1<=u,v<=n)、d(1<=d<=100000)。代表可建道路的起点城市、终点城市和长度。
Output
每组数据输出一行,输出数据组数和使所有城市连通的最小费用,无法全部连通输出-1,格式见样例。
Sample Input
1 2 1 100 1 2 100
Sample Output
Case #1: 10000
HINT
Append Code
析:没什么可说的,最小生成树,水题。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int u, v; LL val; bool operator < (const Node &p) const{ return val < p.val; } }; Node a[maxn]; int p[maxn]; int Find(int x){ return x == p[x] ? x : p[x] = Find(p[x]); } LL k; LL Kruskal(){ int cnt = 0; LL ans = 0; for(int i = 0; i < m && cnt < n-1; ++i){ int x = Find(a[i].u); int y = Find(a[i].v); if(x != y){ p[y] = x; ans += a[i].val; ++cnt; } } ans *= k; return cnt == n-1 ? ans : -1; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d %lld", &n, &m, &k); for(int i = 0; i <= n; ++i) p[i] = i; for(int i = 0; i < m; ++i) scanf("%d %d %lld", &a[i].u, &a[i].v, &a[i].val); sort(a, a+m); printf("Case #%d: %lld\n", kase, Kruskal()); } return 0; }