Description
有n个地点编号1~n,在其中一个地点建立娱乐中心,要求该点距其它各地点的最长往返路程最短,相同条件下总的往返路程和越短越好,如果仍相同,取编号最小的地点,问娱乐中心应选址何处?
Input
第一行输入测试数据组数。每组数据第一行输入地点数n(2≤n≤300),路径数m(0≤m≤10000)。接下来m行,每行有一条有向边,输入起终点u、v(1≤u,v≤n),路径长度d(0≤d≤30000)。
Output
对每一个测试样例输出两行。第一行输出测试样例组数。第二行,若能找到可以到达所有地点的选址,输出最佳选址点的编号、最长往返路程、往返路程和;否则,输出-1。每两组测试数据输出一个空行。
Sample Input
2
3 4
1 2 1
2 1 2
2 3 10
3 123
2 1
1 2 1
Sample Output
Case #1:
1 34 37
Case #2:
-1
HINT
Append Code
析:由于 n 比较小,我们先用Floyd把任意两个结点的最短路长度示求出来,然后再遍历所有任意两个结点,去枚举哪个点做娱乐地址,求出最优的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 300 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn]; int main(){ int T; scanf("%d", &T); for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) dp[i][j] = i == j ? 0 : INF; int u, v, d; for(int i = 0; i < m; ++i){ scanf("%d %d %d", &u, &v, &d); if(d < dp[u][v]) dp[u][v] = d; } for(int k = 1; k <= n; ++k) for(int i = 1; i <= n; ++i) for(int j = 1; j <= n; ++j) if(dp[i][j] > dp[i][k] + dp[k][j]) dp[i][j] = dp[i][k] + dp[k][j]; int ans = -1, ans1 = INF, ans2 = INF; for(int i = 1; i <= n; ++i){ int sum1 = 0, sum2 = 0; for(int j = 1; j <= n; ++j){ if(sum1 > ans1) break; int tmp = dp[i][j] + dp[j][i]; if(sum1 < tmp) sum1 = tmp; sum2 += tmp; } if(sum1 < ans1 || (sum1 == ans1 && sum2 < ans2)){ ans1 = sum1; ans2 = sum2; ans = i; } } if(kase != 1) printf("\n"); printf("Case #%d:\n", kase); if(ans == -1) printf("-1\n"); else printf("%d %d %d\n", ans, ans1, ans2); } return 0; }