Description
已知在以二叉链表存储的二叉树t中,p和q为二叉树中任意输入的两个不同的结点,试编写一个算法,求包含结点p和q的最小子树。
Input
输入样例有多组,每组第一行两个数n,q,分别表示树的结点个数和询问个数。结点编号从1到n。接下来的n–1行按层序输入n-1条边,每一行输入两个数u、v,表示u是v的父亲结点。输入保证是一棵二叉树。再接下来输入q行查询,每行两个不同的整数a,b,表示查询包含ab点的最小子树。 2<= n <= 50000, 1 <= q <= 20000。
Output
对于每个查询,输出最小子树的树根结点编号。
Sample Input
7 5
1 2
1 3
2 4
2 5
3 6
3 7
1 2
2 5
4 5
4 7
1 7
Sample Output
1
2
2
1
1
HINT
Append Code
析:很容易知道,这个最小子树的根结点就是这两个点最近的公共祖先,首先我们先把这个树记录下来,是由子结点指向父结点,然后在找公共祖先时,先用另一个数组,
来记录一个结点的所有祖先,也就是从下向上遍历,然后再用另一个结点也从向下向上遍历,如果发现这个结点已经被访问过,那么就是这个结点,由于树的深度不大了,
应该不会超时。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5e4 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2}; const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int p[maxn]; bool vis[maxn]; int solve(int u, int v){ int x = u; vis[u] = true; while(p[x] != x){ vis[x] = true; x = p[x]; } vis[x] = true; int y = v; while(!vis[y]) y = p[y]; x = u; vis[u] = false; while(p[x] != x){ vis[x] = false; x = p[x]; } vis[x] = false; return y; } int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 1; i <= n; ++i) p[i] = i, vis[i] = false; int u, v; for(int i = 1; i < n; ++i){ scanf("%d %d", &u, &v); p[v] = u; } for(int i = 0; i < m; ++i){ scanf("%d %d", &u, &v); printf("%d\n", solve(u, v)); } } return 0; }