Description
设计程序完成如下要求:在8×8的国际象棋棋盘上,放置8个皇后,使得这8个棋子不能互相被对方吃掉。要求:依次输出各种成功的放置方法。(按照字典序输出)
Input
输入包含多组数据,第一行为数据组数,以后每行一个整数k,代表需要输出的字典序第k大的摆放方法。
Output
每组数据一行,依次输出第i列的皇后所在行数。
Sample Input
1
1
Sample Output
15863724
HINT
Append Code
析:这个题同样是暴力回溯,我们可以提前把表都打出来,set来排一下序,最后输出就好,在回溯时,要同时记录每一行,每一列和两个对角线,
可以用一个两维数组vis来记录。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5e4 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } bool vis[3][200]; char s[10]; vector<string> ans; void dfs(int cur){ if(cur == n){ ans.push_back(s); return ; } for(int i = 0; i < n; ++i){ if(!vis[0][i] && !vis[1][cur+i] && !vis[2][cur-i+n]){ s[cur] = i + '1'; vis[0][i] = vis[1][cur+i] = vis[2][cur-i+n] = 1; dfs(cur+1); vis[0][i] = vis[1][cur+i] = vis[2][cur-i+n] = 0; } } } int main(){ n = 8; memset(s, 0, sizeof s); memset(vis, 0, sizeof vis); dfs(0); sort(ans.begin(), ans.end()); int T; cin >> T; while(T--){ scanf("%d", &n); cout << ans[n-1] << endl; } return 0; }