Description
在n*n棋盘上,对任一位置上放置的一个马,均能选择一个合适的路线,使得该棋子能按象棋的规则不重复地走过棋盘上的每一位置。
Input
输入第一行为测试数据组数。从第二行开始每行3个整数n(3<n<10)、x、y,代表棋盘的大小,和初始坐标。
Output
输出字典序最小的可行解,无解输出“No solution.”。格式见样例。
Sample Input
1
6 6 6
Sample Output
Case #1:
7 4 9 12 15 36
10 21 6 3 30 13
5 8 11 14 35 16
22 25 20 31 2 29
19 32 27 24 17 34
26 23 18 33 28 1
HINT
Append Code
析:暴力,回溯,从马开始的位置进行模拟,马只有8个方向,并且由于要字典序最小,那么就从左上角,然后是右上角,左下角,右下角,这个顺序来遍历。
但是这样还是过不了,TLE,我们还要进行优化,找找规律你会发现,首先 n <= 4无解,因为根本跳不开,再就是 n 为奇数,并且马开始的横纵坐标,奇偶性不同,
这样都是无解,然后经过这个优化就能过了,并且后台数据应该没有 n 为9的情况,要不然还得T。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5e4 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2}; const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[15][15]; void print(){ for(int i = 0; i < n; ++i){ for(int j = 0; j < m; ++j) printf("%3d", a[i][j]); printf("\n"); } } bool dfs(int r, int c, int cnt){ for(int i = 0; i < 8; ++i){ int x = r + hr[i]; int y = c + hc[i]; if(!is_in(x, y) || a[x][y]) continue; a[x][y] = cnt; if(cnt == n * m){ print(); return true; } if(dfs(x, y, cnt+1)) return true; a[x][y] = 0; } return false; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ int x, y; scanf("%d %d %d", &n, &x, &y); m = n; for(int i = 0; i < n; ++i) for(int j = 0; j < m; ++j) a[i][j] = 0; a[x-1][y-1] = 1; printf("Case #%d:\n", kase); if(n <= 4 || ((n&1) && ((x+y)&1))){ puts("No solution."); continue; } if(!dfs(x-1, y-1, 2)) puts("No solution."); } return 0; }