题意:给出一个长度为n的序列,表示有n张卡片,上面的数字,现在还有一张卡片,上面没有数字,问说可以写几种数字在这张卡片上面,
使得n+1张卡片上的数字可以排列成一个等差数列,有无限多种时输出-1.
析:首先排序是肯定的,然后再分成几种,如果只有一个数,那么就一定是-1,如果是两个数时,在前面和后面一定可以加一个,这个也要注意相等的情况,
然后再考虑中间的情况,如果它们的绝对差是偶数,那么中间也可以再放一个,再就是大于等于3个数时候,这个也要考虑是不是全相等,然后再考虑这个
序列是不是可以加一个数成一个等差,再考虑前面和后面。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 100; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline int gcd(int a, int b){ return b ? gcd(b, a%b) : a; } inline int lcm(int a, int b){ return a * b / gcd(a, b); } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int main(){ while(scanf("%d", &n) == 1){ for(int i = 0; i < n; ++i) scanf("%d", a+i); sort(a, a+n); if(1 == n) printf("-1\n"); else if(n == 2){ int k = a[1] - a[0]; if(!k) printf("1\n%d\n", a[0]); else if(k&1){ printf("2\n"); printf("%d %d\n", a[0]-k, a[1]+k); } else{ printf("3\n"); printf("%d %d %d\n", a[0]-k, a[0]+k/2, a[1]+k); } } else{ int cnt = 0, k = INF; for(int i = 1; i < n; ++i) k = Min(k, a[i]-a[i-1]); bool ok = true, flag = false; for(int i = 1; i < n; ++i){ if(k == a[i]-a[i-1]) continue; if(flag){ ok = false; break; } else if(k * 2 == a[i]-a[i-1]){ flag = true, cnt = a[i-1] + k; } else { ok = false; break; } } if(!ok) printf("0\n"); else if(!k) printf("1\n%d\n", a[0]); else if(flag) printf("1\n%d\n", cnt); else{ printf("2\n"); printf("%d %d\n", a[0]-k, a[n-1]+k); } } } return 0; }