题意:给定 n 个商店,然后有 m个限制,去 c 之前必须先去d,问你从0到n+1,最短路程是多少。
析:我们我们要到c,必须要先到d,那么举个例子,2 5, 3 7,如果我们先到5再到2,再到7再到3,那么3-5这个区间我们走了4次,如果我们先到7再到2,
那么就只走了3次,这很明显是最优的,所以我们把能合并的区间都合并起来,然后再一块计算。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 2e5 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int l, r; bool operator < (const Node &p) const{ return l < p.l || (l == p.l && r < p.r); } }; Node a[505]; int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 0; i < m; ++i) scanf("%d %d", &a[i].l, &a[i].r); if(!m){ printf("%d\n", n+1); continue; } sort(a, a+m); int l = a[0].l, r = a[0].r; int ans = l; for(int i = 1; i < m; ++i){ if(a[i].l <= r) r = Max(r, a[i].r); else{ ans += 3 * (r-l) + a[i].l - r; l = a[i].l, r = a[i].r; } } ans += 3 * (r-l) + n - r + 1; printf("%d\n", ans); } return 0; }