题意:给定一个字符串,问你能不能通过重排,使得任意一个素数p <= 字符串长度n,并且 任意的 i <= 长度n/素数p,满足s[p] == s[p*i]。
析:很容易能够看出来,只要是某个素数的小于等于该素数的倍数都是一样的,然后如果他和其他素数也有倍数,那么这些位置也是一样的,
所以我们只要找到任意一个小于等于 n 的素数与该素数相乘都大于 n的,然后用把数目最少的字符种给它,然后剩下的给那些。
所以能够看出lcm(2, i) (i是素数) <= n的那么这些位置包括小于等于该素数的倍都应该是一样的,然后容易解决了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 50; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int num; char ch; bool operator < (const Node &p) const{ return num < p.num; } }; Node a[30]; char s[maxn]; bool is_prime(int n){ int m = sqrt(n+0.5); for(int i = 2; i <= m; ++i) if(n % i == 0) return false; return true; } int main(){ while(scanf("%s", s) == 1){ int n = strlen(s); memset(a, 0, sizeof a); for(int i = 0; i < n; ++i) ++a[s[i]-'a'].num, a[s[i]-'a'].ch = s[i]; sort(a, a+26); int cnt = 0; memset(s, 0, sizeof s); for(int i = 0; i < 26; ++i) if(a[i].num){ cnt = i; s[0] = a[i].ch; --a[i].num; break; } int num = 1; for(int i = 2; i <= n; ++i) if(is_prime(i)){ if(2 * i <= n) continue; ++num; while(!a[cnt].num) ++cnt; s[i-1] = a[cnt].ch; --a[cnt].num; } while(!a[cnt].num) ++cnt; bool ok = true; if(a[cnt].num == n-num){ for(int i = 1; i < n; ++i) if(s[i] == 0) s[i] = a[cnt].ch; } else if(n > 1) ok = false; printf("%s\n", ok ? "YES" : "NO"); if(ok) puts(s); } return 0; }