题意:求区间内出现过的奇数是偶数,出现过的偶数是奇数的个数。
析:这个题是要三进制进行操作的。dp[i][j] 表示前 i 位,状态是 j,可以用三进制来表示 0表示没有出现,1表示奇数,2表示偶数。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[22][60000]; int a[22], b[12], f[12]; void g(int val){ for(int i = 9; i >= 0; --i){ b[i] = val / f[i]; val %= f[i]; } } bool judge(int val){ g(val); for(int i = 0; i < 10; ++i) if((i&1) && b[i] == 1) return false; else if(!(i&1) && b[i] == 2) return false; return true; } int cal(int num, int val){ g(val); b[num] = (b[num]&1) ? 2 : 1; val = 0; for(int i = 0; i < 10; ++i) val += b[i] * f[i]; return val; } LL dfs(int pos, int val, bool is, bool ok){ if(!pos) return judge(val); LL &ans = dp[pos][val]; if(!ok && ans >= 0) return ans; LL res = 0; int n = ok ? a[pos] : 9; for(int i = 0; i <= n; ++i) if(is && !i) res += dfs(pos-1, val, is, ok && i == n); else res += dfs(pos-1, cal(i, val), false, ok && i == n); return ok ? res : ans = res; } LL solve(LL n){ int len = 0; while(n){ a[++len] = n % 10; n /= 10; } return dfs(len, 0, true, true); } int main(){ f[0] = 1; for(int i = 1; i < 10; ++i) f[i] = f[i-1] * 3; memset(dp, -1, sizeof dp); int T; cin >> T; while(T--){ LL m, n; cin >> m >> n; cout << solve(n) - solve(m-1) << endl; } return 0; }