题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量。
析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量有多少,再结合nlogn的LIS,
就能搞定这个题目了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[25][12][1200]; int a[25]; int k; LL dfs(int pos, int num, int s, bool is, bool ok){ if(!pos) return k == num; if(num > k) return 0; LL &ans = dp[pos][k][s]; if(!ok && ans >= 0) return ans; LL res = 0; int n = ok ? a[pos] : 9; for(int i = 0; i <= n; ++i){ if(is && !i) res += dfs(pos-1, num, s, is, ok && i == n); else if((1<<i) > s) res += dfs(pos-1, num+1, s|(1<<i), is && !i, ok && i == n); else if((1<<i)&s) res += dfs(pos-1, num, s, is && !i, ok && i == n); else for(int j = i+1; j <= 9; ++j) if((1<<j)&s){ res += dfs(pos-1, num, (s^(1<<j))|(1<<i), is && !i, ok && i == n); break; } } if(!ok) ans = res; return res; } LL solve(LL n){ int len = 0; while(n){ a[++len] = n % 10; n /= 10; } return dfs(len, 0, 0, true, true); } int main(){ memset(dp, -1, sizeof dp); int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ LL n, m; scanf("%I64d %I64d %d", &m, &n, &k); printf("Case #%d: %I64d\n", kase, solve(n) - solve(m-1)); } return 0; }