题意:给定一棵树,然后让你找出每个结点离所有结点的最远距离。
析:也就说我们要知道离每个结点的最远距离,对于每个结点,我们知道离它最远的,要么是从父结点过来,要么是从子树中得到,dp[i][0] 表示从 i 子树中得到的
最远距离,dp[i][1] 表示 i 从子树得到的次远距离,dp[i][2] 表示从 父结点得到的最大距离,我们要搜索两次,第一次就是搜索子树,很容易得到最远距离和次远距离,
第二次就是要计算从父结点得到的距离,这个要用到这个次远距离,因为我们不知道次远距离和从父结点来的哪个更大。最后再比较dp[i][0] 和 dp[i][2] 就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int to, val, next; }; Edge edge[maxn<<1]; int head[maxn], dp[maxn][3]; int cnt; void add(int u, int v, int val){ edge[cnt].to = v; edge[cnt].val = val; edge[cnt].next = head[u]; head[u] = cnt++; } void dfs(int u, int fa){ int mmax = 0, lmax = 0; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; int val = edge[i].val; if(v == fa) continue; dfs(v, u); int tmp = dp[v][0] + val; if(lmax <= tmp){ mmax = lmax; lmax = tmp; } else if(mmax < tmp) mmax = tmp; } dp[u][0] = lmax; dp[u][1] = mmax; } void dfs1(int u, int fa){ for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; int val = edge[i].val; if(v == fa) continue; dp[v][2] = Max(dp[u][2], dp[v][0]+val == dp[u][0] ? dp[u][1] : dp[u][0]) + val; dfs1(v, u); } } int main(){ while(scanf("%d", &n) == 1){ int u, c; memset(head, -1, sizeof head); cnt = 0; for(int i = 2; i <= n; ++i){ scanf("%d %d", &u, &c); add(i, u, c); add(u, i, c); } memset(dp, 0, sizeof dp); dfs(1, -1); dfs1(1, -1); for(int i = 1; i <= n; ++i) printf("%d\n", Max(dp[i][0], dp[i][2])); } return 0; }