题意:n-1个宿舍,1个供电站,n个位置每两个位置都有边相连,其中有一条边不能连,求n个位置连通的最小花费的最大值。
析:因为要连通,还要权值最小,所以就是MST了,然后就是改变一条边,然后去找出改变哪条能使得总花费最大,dp[i][j] 表示那条边左边的 i 和右边的 j,
最短距离,然后枚举MST里面的每条边,就能知道哪是最大了,注意 供电站和宿舍之间的边不能考虑的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Point{ double x, y; }; struct Edge{ int to, next; }; Edge edge[maxn<<1]; Point a[maxn]; double dist[maxn][maxn], lowc[maxn], dp[maxn][maxn]; bool vis[maxn], is_tree[maxn][maxn]; int pre[maxn], head[maxn]; int cnt; double sum, ans; double Distan(const Point& lhs, const Point& rhs){ return sqrt((lhs.x - rhs.x) * (lhs.x - rhs.x) + (lhs.y - rhs.y) * (lhs.y - rhs.y)); } void add(int u, int v){ edge[cnt].to = v; edge[cnt].next = head[u]; head[u] = cnt++; } void Prim(){ sum = 0.0; memset(vis, false, sizeof vis); memset(pre, 0, sizeof pre); for(int i = 1; i < n; ++i) lowc[i] = dist[0][i]; vis[0] = true; for(int i = 1; i < n; ++i){ double minc = inf; int p = -1; for(int j = 0; j < n; ++j) if(!vis[j] && minc > lowc[j]) minc = lowc[j], p = j; sum += minc; vis[p] = true; add(p, pre[p]); add(pre[p], p); for(int j = 0; j < n; ++j) if(!vis[j] && lowc[j] > dist[p][j]) lowc[j] = dist[p][j], pre[j] = p; } } double dfs(int u, int fa, int root){ double ans = fa == root ? inf : dist[root][u]; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; double tmp = dfs(v, u, root); ans = min(ans, tmp); dp[u][v] = dp[v][u] = min(dp[u][v], tmp); } return ans; } void dfs1(int u, int fa){ for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; if(fa) ans = max(ans, sum-dist[u][v]+dp[u][v]); dfs1(v, u); } } int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 0; i < n; ++i) scanf("%lf %lf", &a[i].x, &a[i].y); for(int i = 0; i < n; ++i) for(int j = i+1; j < n; ++j) dist[i][j] = dist[j][i] = Distan(a[i], a[j]); cnt = 0; memset(head, -1, sizeof head); Prim(); for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) dp[i][j] = inf; for(int i = 0; i < n; ++i) dfs(i, -1, i); ans = sum; dfs1(0, 0); ans *= m * 1.0; printf("%.2f\n", ans); } return 0; }