题意:给定一个序列,a1, a2, a3 ..., an 还有一个序列是 b1, b2, b3 .. bm,问你有多个 q,使得 aq, aq+p, aq+2p, ... aq+(m-1)p。
析:很容易看出来,就是每隔 p算一个序列有多少个匹配。KMP 裸版。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn], b[maxn], nxt[maxn]; int p, ans; void Kmp(int n, int *a, int m, int *b){ nxt[0] = -1; for(int i = 1, j = -1; i < n; nxt[i++] = j){ while(~j && a[j+1] != a[i]) j = nxt[j]; if(a[j+1] == a[i]) ++j; } for(int k = 0; k < p && k+(p-1)*n <= m; ++k){ for(int j = -1, i = k; i < m; i += p){ while(~j && a[j+1] != b[i]) j = nxt[j]; if(a[j+1] == b[i]) ++j; if(j == n-1) ++ans, j = nxt[j]; } } } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d %d", &n, &m, &p); for(int i = 0; i < n; ++i) scanf("%d", a+i); for(int i = 0; i < m; ++i) scanf("%d", b+i); ans = 0; Kmp(m, b, n, a); printf("Case #%d: %d\n", kase, ans); } return 0; }