题意:给定一个有向图,你从1出发到n,走尽可能多的点,并且使总权值不大于t。
析:在比赛时,竟然看成有向图了,就想了好久,感觉dp,但是不会啊。。。如果是有向图就好做多了,枚举边,然后打印就好,dp[i][j] 表示,
经过 i 个结点,并且在 j的最小时间。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5000 + 5; const LL mod = 10000000000007; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[maxn][maxn], p[maxn][maxn]; int G[maxn][3]; stack<int> stacks; int main(){ int t; while(scanf("%d %d %d", &n, &m, &t) == 3){ int x; for(int i = 0; i < m*3; ++i){ scanf("%d", &x); G[i/3][i%3] = x; } memset(dp, INF, sizeof dp); dp[1][1] = 0; memset(p, 0, sizeof p); int ans = 0; for(int i = 2; i <= n; ++i) for(int j = 0; j < m; ++j){ int pre = G[j][0], last = G[j][1], w = G[j][2]; if(dp[i-1][pre] + w <= t && dp[i][last] > dp[i-1][pre] + w){ dp[i][last] = dp[i-1][pre] + w; ans = last == n ? Max(ans, i) : ans; p[i][last] = pre; } } printf("%d\n", ans); for(int i = n; ans; i = p[ans--][i]) stacks.push(i); printf("%d", stacks.top()); stacks.pop(); while(!stacks.empty()) printf(" %d", stacks.top()), stacks.pop(); printf("\n"); } return 0; }