题意:给定一个数 n,求1-n之间有多少个包含13,并且是13的倍数的数。
析:数位DP,dp[i][j][k],表示前 i 位,模13余数为 j,k = 0,表示不含 13并且前一位不是1,k = 1,表示不含13但前一位是1,k = 2,
表示含13,那么剩下的就简单了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int dp[15][15][3], a[15]; int dfs(int pos, int last, int val, bool ok){ if(!pos) return last == 0 && val == 2; int &ans = dp[pos][last][val]; if(!ok && ans >= 0) return ans; int res = 0, n = ok ? a[pos] : 9; for(int i = 0; i <= n; ++i){ if(i == 3 && val == 1) res += dfs(pos-1, (last*10+i)%13, 2, ok && i == n); else if(val == 2) res += dfs(pos-1, (last*10+i)%13, 2, ok && i == n); else if(i == 1 && !val) res += dfs(pos-1, (last*10+i)%13, 1, ok && i == n); else if(i == 1) res += dfs(pos-1, (last*10+i)%13, 1, ok && i == n); else res += dfs(pos-1, (last*10+i)%13, 0, ok && i == n); } if(!ok) ans = res; return res; } int solve(int n){ int len = 0; while(n){ a[++len] = n % 10; n /= 10; } return dfs(len, 0, 0, true); } int main(){ memset(dp, -1, sizeof dp); while(scanf("%d", &n) == 1){ printf("%d\n", solve(n)); } return 0; }