题意:给出一个整数nnn
, 找出一个大于等于nnn
的最小整数mmm
, 使得mmm
可以表示为2a3b5c7d2^a3^b5^c7^d2a3b5c7d
.
析:预处理出所有形为2a3b5c7d2^a3^b5^c7^d2a3b5c7d
即可, 大概只有5000左右个.然后用二分查找就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } vector<LL> ans; void init(){ LL a = 1, b = 1, c = 1, d = 1; for(; ; a *= 2){ if(a > mod) break; b = 1; for(; ; b *= 3){ if(a * b > mod) break; c = 1; for(; ; c *= 5){ if(a * b * c > mod) break; d = 1; for(; ; d *= 7){ LL sum = a * b * c * d; if(sum > mod) break; ans.push_back(sum); } } } } sort(ans.begin(), ans.end()); } int main(){ init(); int T; cin >> T; while(T--){ LL n; scanf("%I64d", &n); printf("%I64d\n", *lower_bound(ans.begin(), ans.end(), n)); } return 0; }