题意:给出平面上的两类点,判断是否能画一条直线将两类点完全分割开来.
析:用暴力去枚举任意两点当作直线即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 100; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct node{ int x, y, val; bool operator < (const node &p) const{ return val < p.val; } }; node a[255]; int judge(const node &p1, const node &p2, const node &p3){ return (p1.x-p3.x) * (p2.y-p3.y) - (p1.y-p3.y) * (p2.x-p3.x); }
bool cmp(const node &p, const node &q){ return p.x < q.x || (p.x == q.x && p.y < q.y); } bool solve(int s, int t){ int x = 0, y = 0; vector<node> v; for(int i = 0; i < n; ++i){ if(i == s || t == i) continue; if(!judge(a[s], a[t], a[i])){ v.push_back(a[i]); continue; } if(judge(a[s], a[t], a[i]) > 0 && !a[i].val){ if(!x) x = 1, y = -1; else if(x < 0) return false; } else if(judge(a[s], a[t], a[i]) < 0 && !a[i].val){ if(!x) x = -1, y = 1; else if(x > 0) return false; } else if(judge(a[s], a[t], a[i]) > 0 && a[i].val){ if(!y) y = 1, x = -1; else if(y < 0) return false; } else if(judge(a[s], a[t], a[i]) < 0 && a[i].val){ if(!y) y = -1, x = 1; else if(y > 0) return false; } } if(!v.size()) return true; int ok = 0; v.push_back(a[s]); v.push_back(a[t]); sort(v.begin(), v.end(), cmp); int cnt = 0; for(int i = 0; i < v.size(); ++i){ if(v[i].val && !ok){ ok = 1; } else if(!v[i].val && !ok){ ok = -1; } else if(v[i].val && ok == -1){ ok = 1; ++cnt; } else if(!v[i].val && ok == 1){ ok = -1; ++cnt; } if(cnt > 1) return false; } return true; } int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); for(int i = 0; i < n; ++i){ scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].val); } bool ok = false; for(int i = 0; i < n; ++i){ for(int j = i+1; j < n; ++j) if(solve(i, j)){ ok = true; break; } if(ok) break; } printf("%d\n", ok); } return 0; }