题意:求标号最小的最大割点.(删除该点后,指定点#sink能到达的点数减少最多).
析:由于不知道要去掉哪个结点,又因为只有100个结点,所以我们考虑用一个暴力,把所有的结点都去一次,然后用并查集去判断。
当然也可以用割点和桥的模板,最后再判断一下,哪个点后面的点有多少就好。
代码如下:
并查集+暴力:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 100; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int x; vector<P> v; int p[105]; int Find(int x) { return x == p[x] ? x : p[x] = Find(p[x]); } int main(){ while(scanf("%d", &n) == 1 && n){ scanf("%d", &x); scanf("%d", &m); int u, vv; v.clear(); for(int i = 0; i < m; ++i){ scanf("%d %d", &u, &vv); v.push_back(P(u, vv)); } int ans = 0, cnt = 0; for(int i = 1; i <= n; ++i){ if(i == x) continue; for(int j = 1; j <= n; ++j) p[j] = j; for(int j = 0; j < v.size(); ++j){ u = v[j].first; vv = v[j].second; if(u == i || vv == i) continue; int x = Find(u); int y = Find(vv); if(x != y) p[y] = x; } map<int, int> mp; map<int, int> :: iterator it; for(int j = 1; j <= n; ++j) if(i != j) ++mp[Find(j)]; if(mp.size() <= 1) continue; int y = Find(x); if(cnt < n-mp[y]-1){ cnt = n-mp[y]-1; ans = i; } } printf("%d\n", ans); } return 0; }
割点和桥:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e2 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } vector<int> G[maxn]; bool cut[maxn]; int low[maxn], dfn[maxn], vis[maxn], ans[maxn]; void dfs(int cur, int fa, int d){ vis[cur] = 1; dfn[cur] = low[cur] = d; int u = 0; for(int i = 0; i < G[cur].size(); ++i){ int v = G[cur][i]; if(v != fa && 1 == vis[v]){ if(dfn[v] < low[cur]) low[cur] = dfn[v]; } if(!vis[v]){ dfs(v, cur, d+1); ++u; if(low[v] < low[cur]) low[cur] = low[v]; if((fa == -1 && u > 1) || (fa != -1 && low[v] >= dfn[cur])) cut[cur] = true; } } vis[cur] = 2; } void dfs1(int u){ vis[u] = 1; ans[u] = 1; for(int i = 0; i < G[u].size(); ++i){ int v = G[u][i]; if(vis[v]) continue; dfs1(v); ans[u] += ans[v]; } } int main(){ int rt; while(scanf("%d", &n) == 1 && n){ scanf("%d", &rt); scanf("%d", &m); for(int i = 1; i <= n; ++i) G[i].clear(); int u, v; for(int i = 0; i < m; ++i){ scanf("%d %d", &u, &v); G[u].push_back(v); G[v].push_back(u); } memset(dfn, 0, sizeof dfn); memset(cut, false, sizeof cut); memset(low, 0, sizeof vis); memset(vis, 0, sizeof vis); dfs(rt, -1, 0); memset(vis, 0, sizeof vis); memset(ans, 0, sizeof ans); dfs1(rt); int anss = 0, cnt = 0; for(int i = 1; i <= n; ++i){ if(cut[i] && cnt < ans[i]){ cnt = ans[i]; anss = i; } } printf("%d\n", anss); } return 0; }