题意:给定一个 n*n 的矩阵,然后有 m 个询问,问你每一行或者每一列总是多少,并把这一行清空。
析:这个题不仔细想想,还真不好想,我们可以根据这个题意,知道每一行或者每一列都可以求和公式来求,然后再送去变成0的数,由于每一行或者每一列,
都是等差数列,所以我们只要记录每一个的第一个元素就好,再记录有多少个,然后就可以推算出来。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } char s[5]; bool row[maxn], col[maxn]; int main(){ freopen("adjustment.in", "r", stdin); freopen("adjustment.out", "w", stdout); while(scanf("%d %d", &n, &m) == 2){ memset(row, false, sizeof row); memset(col, false, sizeof col); int x = 0; LL r = 0, c = 0; int cntr = 0, cntc = 0; LL ans = 0; for(int i = 0; i < m; ++i){ scanf("%s %d", s, &x); if(s[0] == 'R'){ if(row[x]) ans = 0; else{ r += x; ++cntr; ans = (LL)n*(LL)(x+x+n+1)/2LL - (LL)cntc*x - c; } row[x] = true; } else { if(col[x]) ans = 0; else{ c += x; ++cntc; ans = (LL)n*(LL)(x+x+n+1)/2LL - (LL)cntr*x - r; } col[x] = true; } printf("%I64d\n", ans); } } return 0; }