题意:给定 n + m 个街道,问你从左上角走到右下角的所有路的权值最小的中的最大的。
析:我们只要考虑几种情况就好了,先走行再走列和先走列再走行差不多。要么是先横着,再竖着,要么是先横再竖再横,要么是先横再竖再横再竖,全考虑一下就好了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define frer freopen("in.txt", "r", stdin) #define frew freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int mod = 1e9 + 7; const char *mark = "+-*"; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int row[maxn], col[maxn]; int solve(int *a, int r, int *b, int c){ int ans1 = min(a[0], b[c]); int ans2 = min(a[0], a[r]); int cnt = 0; for(int i = 0; i <= c; ++i) cnt = max(cnt, b[i]); ans2 = min(ans2, cnt); int ans3 = min(a[0], b[c]); int rr = 0; for(int i = 0; i <= r; ++i) rr = max(rr, a[i]); ans2 = min(ans2, min(cnt, rr)); return max(ans1, max(ans2, ans3)); } int main(){ while(scanf("%d %d", &m, &n) == 2){ for(int i = 0; i < m; ++i) scanf("%d", &col[i]); for(int j = 0; j < n; ++j) scanf("%d", &row[j]); int ans = solve(row, n-1, col, m-1); ans = max(ans, solve(col, m-1, row, n-1)); printf("%d\n", ans); } return 0; }