题意:折叠一个字符串,使得其成为一个尽量短的字符串 例如AAAAAA变成6(A)
而且这个折叠是可以嵌套的,例如 NEEEEERYESYESYESNEEEEERYESYESYES 会变成 2(N5(E)R3(YES))。
析:用dp[i][j] 表示字符串中的第 i 个到第 j 个字符压缩后的最短长度。那么就有两种方式,一种就是自身压缩都最短,另一种就是两段分别压缩,
然后再接起来最短。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e2 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } string str; string dp[maxn][maxn]; int cal(int l, int r){ int len = (r - l + 1); for(int i = 1; i <= len/2; ++i) if(len % i == 0){ bool ok = true; for(int j = l; j <= r-i; ++j) if(str[j] != str[j+i]){ ok = false; break; } if(ok) return i; } return 0; } void solve(){ for(int i = 0; i < n; ++i) dp[i][i] = str[i]; for(int i = n-2; i >= 0; --i){ for(int j = i+1; j < n; ++j){ int ans = INF, x; for(int k = i; k < j; ++k) if(ans > dp[i][k].size() + dp[k+1][j].size()){ ans = dp[i][k].size() + dp[k+1][j].size(); x = k; } dp[i][j] = dp[i][x] + dp[x+1][j]; int len = cal(i, j); if(len){ char s[5]; sprintf(s, "%d", (j-i+1)/len); string tmp = (string)s + "(" + dp[i][i+len-1] + ")"; if(tmp.size() <= ans) dp[i][j] = tmp; } } } } int main(){ while(cin >> str){ n = str.size(); solve(); cout << dp[0][n-1] << endl; } return 0; }