题意:给一个的格子图,有 n 行单元格,每行有a[i]个格子,要求往格子中填1~m的数字,要求每个数字大于等于左边的数字,大于上边的数字,问有多少种填充方法。
析:感觉像个DP,但是不会啊。。。就想暴力试试,反正数据量看起来不大才7,但是。。。TLE了,又换了一个暴力方法,2秒多过了,差点啊。
其实这是一个状压DP,dp[i][s]表示在第 i 列,在集合 s 中有方法数,那么怎么转移呢,这个还是挺简单的,就是判断第i+1列是不是比第 i 列都大于等于就ok了,
输入时先把行,转化成列,再计算,初始化就是第一列喽,假设什么组合都行。
代码如下:
暴力代码:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define frer freopen("in.txt", "r", stdin) #define frew freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 450 + 5; const int mod = 1e9 + 7; const char *mark = "+-*"; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int w[10], h[10]; int ans = 0, cnt[10][10]; void dfs(int r, int c, int mx){ if(c > m){ ++ans; return ; } int mm = Min(n, n-h[c]+r); for(int i = Max(mx+1, cnt[r][c-1]); i <= mm; ++i){ cnt[r][c] = i; if(r == h[c]) dfs(1, c+1, 0); else dfs(r+1, c, i); } } int main(){ int k; while(scanf("%d", &k) == 1){ memset(h, 0, sizeof h); m = 0; for(int i = 1; i <= k; ++i){ int x; scanf("%d", &x); m = Max(m, x); for(int j = 1; j <= x; ++j) ++h[j]; } scanf("%d", &n); ans = 0; memset(cnt, 0, sizeof cnt); dfs(1, 1, 0); printf("%d\n", ans); } return 0; }
状压DP代码:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define frer freopen("in.txt", "r", stdin) #define frew freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 8; const int mod = 1e9 + 7; const char *mark = "+-*"; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[10]; int dp[maxn][1<<maxn]; inline int lowbit(int x){ return x & (-x); } inline int bitcount(int i){//返回 i 这个数二进制数中有几个1 int ans = 0; while(i) ++ans, i -= lowbit(i); return ans; } inline bool judge(int j, int k){//判断第 j 列是不是小于等于第 k 列 int tj[10], tk[10]; int cntj = 0, cntk = 0; for(int i = 0; i < m; ++i){ if(j>>i&1) tj[cntj++] = i; if(k>>i&1) tk[cntk++] = i; } for(int i = 0; i < cntk; ++i) if(tj[i] > tk[i]) return false; return true; } int main(){ while(scanf("%d", &n) == 1){ memset(a, 0, sizeof a); int t = 0, x; for(int i = 0; i < n; ++i){ scanf("%d", &x); t = Max(t, x); for(int j = 1; j <= x; ++j) ++a[j]; } memset(dp, 0, sizeof dp); scanf("%d", &m); int len = 1<<m; for(int i = 0; i < len; ++i)//初始化第 1 列 if(bitcount(i) == a[1]) dp[1][i] = 1; for(int i = 1; i < t; ++i){ for(int j = 0; j < len; ++j){ if(bitcount(j) != a[i] || !dp[i][j]) continue; for(int k = 0; k < len; ++k) if(bitcount(k) == a[i+1] && judge(j, k)) dp[i+1][k] += dp[i][j]; } } int ans = 0; for(int i = 0; i < len; ++i) ans += dp[t][i]; printf("%d\n", ans); } return 0; }