题意:给定 n 个由0~m-1的整数组成的序列,输入 k ,问你找出连续的最短序列,使得这个序列含有1-k的所有整数。
析:这个题,很简单么,只要从头开始扫一遍就OK,时间复杂度为O(n)。
代码如下:
#include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> using namespace std ; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f3f; const double eps = 1e-8; const int maxn = 1e6 + 5; const int dr[] = {0, 0, -1, 1}; const int dc[] = {-1, 1, 0, 0}; int n, m; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int vis[1005]; void init(){ a[0] = 1; a[1] = 2; a[2] = 3; for(int i = 3 ; i < n; ++i) a[i] = (a[i-1]+a[i-2]+a[i-3]) % m + 1; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ int k; scanf("%d %d %d", &n, &m, &k); init(); int ans = INF; int s = 0, e = 0; memset(vis, 0, sizeof(vis)); int cnt = 0; while(e < n){ while(e < n && cnt < k){ if(!vis[a[e]] && a[e] <= k) ++cnt; ++vis[a[e]]; ++e; } if(cnt == k) ans = min(ans, e-s); --vis[a[s]]; if(!vis[a[s]] && a[s] <= k) --cnt; ++s; } printf("Case %d: ", kase); ans == INF ? printf("sequence nai\n") : printf("%d\n", ans); } return 0; }