题意:给定点A[0~n-1]和B[0],B[1],A[0]、A[1]映射到B[0]、B[1],求出其余点的映射B[2]~B[n-1]。
析:运用复数类,关键是用模板复数类,一直编译不过,我明明能编译过,交上就不过,只能写一个复数了。。。
代码如下:
#include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <string> #include <algorithm> #include <vector> #include <map> using namespace std ; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f3f; const int maxn = 10000 + 5; template<class T> class Complex { public: Complex( ){real=0;imag=0;} Complex(T r,T i){real=r;imag=i;} Complex complex_add(Complex &c2); Complex complex_minus(Complex &c2); Complex complex_multiply(Complex &c2); Complex complex_divide(Complex &c2); T real1(); T imag1(); public: friend istream &operator >>(istream &is, Complex<T> &p){ cin >> p.real >> p.imag; return is; } private: T real; T imag; }; template<class T> Complex<T> Complex<T>::complex_add(Complex<T> &c2) { Complex<T> c; c.real=real+c2.real; c.imag=imag+c2.imag; return c; } template <class T> Complex<T> Complex<T>::complex_minus(Complex <T> &c2) { Complex <T> c; c.real=real-c2.real; c.imag=imag-c2.imag; return c; } template <class T> Complex<T> Complex<T>::complex_multiply(Complex <T> &c2) { Complex <T> c; c.real=real*c2.real-imag*c2.imag; c.imag=imag*c2.real+real*c2.imag; return c; } template <class T> Complex<T> Complex<T>::complex_divide(Complex <T> &c2) { Complex <T> c; T d=c2.real*c2.real+c2.imag*c2.imag; c.real=(real*c2.real+imag*c2.imag)/d; c.imag=(imag*c2.real-real*c2.imag)/d; return c; } template <class T> T Complex<T>::real1(){ return real; } template <class T> T Complex<T>::imag1(){ return imag; } Complex<double> a[maxn], b[2], ans; int main(){ int T, n; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); double x, y; for(int i = 0; i < n; ++i){ cin >> a[i]; } for(int i = 0; i < 2; ++i){ cin >> b[i]; } Complex<double> tmp = (b[1].complex_minus(b[0])); Complex<double> tmp1 = (a[1].complex_minus(a[0])); tmp = tmp.complex_divide(tmp1); printf("Case %d:\n", kase); for(int i = 0; i < n; ++i){ ans = (a[i].complex_minus(a[0])); ans = ans.complex_multiply(tmp); ans = ans.complex_add(b[0]); printf("%.2lf %.2lf\n", ans.real1(), ans.imag1()); } } return 0; }
#include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <string> #include <algorithm> #include <vector> #include <map> #include <complex> using namespace std ; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f3f; const int maxn = 10000 + 5; complex<double> a[maxn], b[2], ans; int main(){ int T, n; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%lf %lf", &a[i].real(), &a[i].imag()); scanf("%lf %lf %lf %lf", &b[0].real(), &b[0].imag(), &b[1].real(), &b[1].imag()); complex<double> tmp = (b[1]-b[0])/(a[1]-a[0]); printf("Case %d:\n", kase); for(int i = 0; i < n; ++i){ ans = (a[i]-a[0]) * tmp + b[0]; printf("%.2lf %.2lf\n", ans.real(), ans.imag()); } } return 0; }