摘要:
一、利用OpenCV中提供的GPU模块 目前,OpenCV中已提供了许多GPU函数,直接使用OpenCV提供的GPU模块,可以完成大部分图像处理的加速操作。 基本使用方法,请参考:http://www.cnblogs.com/dwdxdy/p/3244508.html 该方法的优点是使用简单,利用GpuMat管理CPU与GPU之间的数据传输,而且不需要关注内核函数调用参数的设置,使用过程中,只需要关注处理的逻辑操作。 缺点是受限于OpenCV库的发展和更新,当需要完成一些自定义的操作时(OpenCV中没有提供相应的库),难以满足应用的需求,需要自己实现自定义操作的并行实现。此外,针对一... 阅读全文
摘要:
ViBe是一种像素级的背景建模、前景检测算法,该算法主要不同之处是背景模型的更新策略,随机选择需要替换的像素的样本,随机选择邻域像素进行更新。在无法确定像素变化的模型时,随机的更新策略,在一定程度上可以模拟像素变化的不确定性。背景模型的初始化 初始化是建立背景模型的过程,一般的检测算法需要一定长度的视频序列学习完成,影响了检测的实时性,而且当视频画面突然变化时,重新学习背景模型需要较长时间。 ViBe算法主要是利用单帧视频序列初始化背景模型,对于一个像素点,结合相邻像素点拥有相近像素值的空间分布特性,随机的选择它的邻域点的像素值作为它的模型样本值。 优点:不仅减少了背景模型建立的过程... 阅读全文