MD5算法

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>

//字节序的小头和大头的问题
#define ZEN_LITTLE_ENDIAN  0x0123
#define ZEN_BIG_ENDIAN     0x3210

//目前所有的代码都是为了小头党服务的,不知道有生之年这套代码是否还会为大头党服务一次?
#ifndef ZEN_BYTES_ORDER
#define ZEN_BYTES_ORDER    ZEN_LITTLE_ENDIAN
#endif

#ifndef ZEN_SWAP_UINT16
#define ZEN_SWAP_UINT16(x)  ((((x) & 0xff00) >>  8) | (((x) & 0x00ff) <<  8))
#endif
#ifndef ZEN_SWAP_UINT32
#define ZEN_SWAP_UINT32(x)  ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >>  8) | \
    (((x) & 0x0000ff00) <<  8) | (((x) & 0x000000ff) << 24))
#endif
#ifndef ZEN_SWAP_UINT64
#define ZEN_SWAP_UINT64(x)  ((((x) & 0xff00000000000000) >> 56) | (((x) & 0x00ff000000000000) >>  40) | \
    (((x) & 0x0000ff0000000000) >> 24) | (((x) & 0x000000ff00000000) >>  8) | \
    (((x) & 0x00000000ff000000) << 8 ) | (((x) & 0x0000000000ff0000) <<  24) | \
    (((x) & 0x000000000000ff00) << 40 ) | (((x) & 0x00000000000000ff) <<  56))
#endif

//将一个(字符串)数组,拷贝到另外一个uint32_t数组,同时每个uint32_t反字节序
void *swap_uint32_memcpy(void *to, const void *from, size_t length)
{
    memcpy(to, from, length);
    size_t remain_len =  (4 - (length & 3)) & 3;

    //数据不是4字节的倍数,补充0
    if (remain_len)
    {
        for (size_t i = 0; i < remain_len; ++i)
        {
            *((char *)(to) + length + i) = 0;
        }
        //调整成4的倍数
        length += remain_len;
    }

    //所有的数据反转
    for (size_t i = 0; i < length / 4; ++i)
    {
        ((uint32_t *)to)[i] = ZEN_SWAP_UINT32(((uint32_t *)to)[i]);
    }

    return to;
}

///MD5的结果数据长度
static const size_t ZEN_MD5_HASH_SIZE   = 16;
///SHA1的结果数据长度
static const size_t ZEN_SHA1_HASH_SIZE  = 20;



namespace ZEN_LIB
{


/*!
@brief      求某个内存块的MD5,
@return     unsigned char* 返回的的结果,
@param[in]  buf    求MD5的内存BUFFER指针
@param[in]  size   BUFFER长度
@param[out] result 结果
*/
unsigned char *md5(const unsigned char *buf,
                   size_t size,
                   unsigned char result[ZEN_MD5_HASH_SIZE]);


/*!
@brief      求内存块BUFFER的SHA1值
@return     unsigned char* 返回的的结果
@param[in]  buf    求SHA1的内存BUFFER指针
@param[in]  size   BUFFER长度
@param[out] result 结果
*/
unsigned char *sha1(const unsigned char *buf,
                    size_t size,
                    unsigned char result[ZEN_SHA1_HASH_SIZE]);
};


//================================================================================================
//MD5的算法

//每次处理的BLOCK的大小
static const size_t ZEN_MD5_BLOCK_SIZE = 64;

//md5算法的上下文,保存一些状态,中间数据,结果
typedef struct md5_ctx
{
    //处理的数据的长度
    uint64_t length_;
    //还没有处理的数据长度
    uint64_t unprocessed_;
    //取得的HASH结果(中间数据)
    uint32_t  hash_[4];
} md5_ctx;


#define ROTL32(dword, n) ((dword) << (n) ^ ((dword) >> (32 - (n))))
#define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
#define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
#define ROTR64(qword, n) ((qword) >> (n) ^ ((qword) << (64 - (n))))


/*!
@brief      内部函数,初始化MD5的context,内容
@param      ctx
*/
static void zen_md5_init(md5_ctx *ctx)
{
    ctx->length_ = 0;
    ctx->unprocessed_ = 0;

    /* initialize state */
    ctx->hash_[0] = 0x67452301;
    ctx->hash_[1] = 0xefcdab89;
    ctx->hash_[2] = 0x98badcfe;
    ctx->hash_[3] = 0x10325476;
}

/* First, define four auxiliary functions that each take as input
 * three 32-bit words and returns a 32-bit word.*/

/* F(x,y,z) = ((y XOR z) AND x) XOR z - is faster then original version */
#define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define MD5_H(x, y, z) ((x) ^ (y) ^ (z))
#define MD5_I(x, y, z) ((y) ^ ((x) | (~z)))

/* transformations for rounds 1, 2, 3, and 4. */
#define MD5_ROUND1(a, b, c, d, x, s, ac) { \
        (a) += MD5_F((b), (c), (d)) + (x) + (ac); \
        (a) = ROTL32((a), (s)); \
        (a) += (b); \
    }
#define MD5_ROUND2(a, b, c, d, x, s, ac) { \
        (a) += MD5_G((b), (c), (d)) + (x) + (ac); \
        (a) = ROTL32((a), (s)); \
        (a) += (b); \
    }
#define MD5_ROUND3(a, b, c, d, x, s, ac) { \
        (a) += MD5_H((b), (c), (d)) + (x) + (ac); \
        (a) = ROTL32((a), (s)); \
        (a) += (b); \
    }
#define MD5_ROUND4(a, b, c, d, x, s, ac) { \
        (a) += MD5_I((b), (c), (d)) + (x) + (ac); \
        (a) = ROTL32((a), (s)); \
        (a) += (b); \
    }


/*!
@brief      内部函数,将64个字节,16个uint32_t的数组进行摘要(杂凑)处理,处理的数据自己序是小头数据
@param      state 存放处理的hash数据结果
@param      block 要处理的block,64个字节,16个uint32_t的数组
*/
static void zen_md5_process_block(uint32_t state[4], const uint32_t block[ZEN_MD5_BLOCK_SIZE / 4])
{
    register unsigned a, b, c, d;
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];

    const uint32_t *x = NULL;

    //MD5里面计算的数据都是小头数据.大头党的数据要处理
#if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
    x = block;
#else
    uint32_t swap_block[ZEN_MD5_BLOCK_SIZE / 4];
    swap_uint32_memcpy(swap_block, block, 64);
    x = swap_block;
#endif


    MD5_ROUND1(a, b, c, d, x[ 0],  7, 0xd76aa478);
    MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756);
    MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db);
    MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee);
    MD5_ROUND1(a, b, c, d, x[ 4],  7, 0xf57c0faf);
    MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a);
    MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613);
    MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501);
    MD5_ROUND1(a, b, c, d, x[ 8],  7, 0x698098d8);
    MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af);
    MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1);
    MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be);
    MD5_ROUND1(a, b, c, d, x[12],  7, 0x6b901122);
    MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193);
    MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e);
    MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821);

    MD5_ROUND2(a, b, c, d, x[ 1],  5, 0xf61e2562);
    MD5_ROUND2(d, a, b, c, x[ 6],  9, 0xc040b340);
    MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51);
    MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa);
    MD5_ROUND2(a, b, c, d, x[ 5],  5, 0xd62f105d);
    MD5_ROUND2(d, a, b, c, x[10],  9,  0x2441453);
    MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681);
    MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8);
    MD5_ROUND2(a, b, c, d, x[ 9],  5, 0x21e1cde6);
    MD5_ROUND2(d, a, b, c, x[14],  9, 0xc33707d6);
    MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87);
    MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed);
    MD5_ROUND2(a, b, c, d, x[13],  5, 0xa9e3e905);
    MD5_ROUND2(d, a, b, c, x[ 2],  9, 0xfcefa3f8);
    MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9);
    MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a);

    MD5_ROUND3(a, b, c, d, x[ 5],  4, 0xfffa3942);
    MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681);
    MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122);
    MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c);
    MD5_ROUND3(a, b, c, d, x[ 1],  4, 0xa4beea44);
    MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9);
    MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60);
    MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70);
    MD5_ROUND3(a, b, c, d, x[13],  4, 0x289b7ec6);
    MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa);
    MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085);
    MD5_ROUND3(b, c, d, a, x[ 6], 23,  0x4881d05);
    MD5_ROUND3(a, b, c, d, x[ 9],  4, 0xd9d4d039);
    MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5);
    MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8);
    MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665);

    MD5_ROUND4(a, b, c, d, x[ 0],  6, 0xf4292244);
    MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97);
    MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7);
    MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039);
    MD5_ROUND4(a, b, c, d, x[12],  6, 0x655b59c3);
    MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92);
    MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d);
    MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1);
    MD5_ROUND4(a, b, c, d, x[ 8],  6, 0x6fa87e4f);
    MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
    MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314);
    MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1);
    MD5_ROUND4(a, b, c, d, x[ 4],  6, 0xf7537e82);
    MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235);
    MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb);
    MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391);

    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
}


/*!
@brief      内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
@param[out] ctx  算法的context,用于记录一些处理的上下文和结果
@param[in]  buf  处理的数据,
@param[in]  size 处理的数据长度
*/
static void zen_md5_update(md5_ctx *ctx, const unsigned char *buf, size_t size)
{
    //为什么不是=,因为在某些环境下,可以多次调用zen_md5_update,但这种情况,必须保证前面的调用,每次都没有unprocessed_
    ctx->length_ += size;

    //每个处理的块都是64字节
    while (size >= ZEN_MD5_BLOCK_SIZE)
    {
        zen_md5_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
        buf  += ZEN_MD5_BLOCK_SIZE;
        size -= ZEN_MD5_BLOCK_SIZE;
    }

    ctx->unprocessed_ = size;
}


/*!
@brief      内部函数,处理数据的末尾部分,我们要拼出最后1个(或者两个)要处理的BLOCK,加上0x80,加上长度进行处理
@param[in]  ctx    算法的context,用于记录一些处理的上下文和结果
@param[in]  buf    处理的数据
@param[in]  size   处理buffer的长度
@param[out] result 返回的结果,
*/
static void zen_md5_final(md5_ctx *ctx, const unsigned char *buf, size_t size, unsigned char *result)
{
    uint32_t message[ZEN_MD5_BLOCK_SIZE / 4];

    //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
    if (ctx->unprocessed_)
    {
        memcpy(message, buf + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
    }

    //得到0x80要添加在的位置(在uint32_t 数组中),
    uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
    uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;

    //添加0x80进去,并且把余下的空间补充0
    message[index]   &= ~(0xFFFFFFFF << shift);
    message[index++] ^= 0x80 << shift;

    //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
    if (index > 14)
    {
        while (index < 16)
        {
            message[index++] = 0;
        }

        zen_md5_process_block(ctx->hash_, message);
        index = 0;
    }

    //补0
    while (index < 14)
    {
        message[index++] = 0;
    }

    //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
    uint64_t data_len = (ctx->length_) << 3;

    //注意MD5算法要求的64bit的长度是小头LITTLE-ENDIAN编码,注意下面的比较是!=
#if ZEN_BYTES_ORDER != ZEN_LITTLE_ENDIAN
    data_len = ZEN_SWAP_UINT64(data_len);
#endif

    message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
    message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);

    zen_md5_process_block(ctx->hash_, message);

    //注意结果是小头党的,在大头的世界要进行转换
#if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
    memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE);
#else
    swap_uint32_memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE);
#endif

}


//计算一个内存数据的MD5值
unsigned char *ZEN_LIB::md5(const unsigned char *buf,
                            size_t size,
                            unsigned char result[ZEN_MD5_HASH_SIZE])
{
    assert(result != NULL);

    md5_ctx ctx;
    zen_md5_init(&ctx);
    zen_md5_update(&ctx, buf, size);
    zen_md5_final(&ctx, buf, size, result);
    return result;
}




//================================================================================================
//SHA1的算法

//每次处理的BLOCK的大小
static const size_t ZEN_SHA1_BLOCK_SIZE = 64;

//SHA1算法的上下文,保存一些状态,中间数据,结果
typedef struct sha1_ctx
{

    //处理的数据的长度
    uint64_t length_;
    //还没有处理的数据长度
    uint64_t unprocessed_;
    /* 160-bit algorithm internal hashing state */
    uint32_t hash_[5];
} sha1_ctx;

//内部函数,SHA1算法的上下文的初始化
static void zen_sha1_init(sha1_ctx *ctx)
{
    ctx->length_ = 0;
    ctx->unprocessed_ = 0;
    // 初始化算法的几个常量,魔术数
    ctx->hash_[0] = 0x67452301;
    ctx->hash_[1] = 0xefcdab89;
    ctx->hash_[2] = 0x98badcfe;
    ctx->hash_[3] = 0x10325476;
    ctx->hash_[4] = 0xc3d2e1f0;
}


/*!
@brief      内部函数,对一个64bit内存块进行摘要(杂凑)处理,
@param      hash  存放计算hash结果的的数组
@param      block 要计算的处理得内存块
*/
static void zen_sha1_process_block(uint32_t hash[5],
                                   const uint32_t block[ZEN_SHA1_BLOCK_SIZE / 4])
{
    size_t        t;
    uint32_t      wblock[80];
    register uint32_t      a, b, c, d, e, temp;

    //SHA1算法处理的内部数据要求是大头党的,在小头的环境转换
#if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
    swap_uint32_memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE);
#else
    ::memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE);
#endif

    //处理
    for (t = 16; t < 80; t++)
    {
        wblock[t] = ROTL32(wblock[t - 3] ^ wblock[t - 8] ^ wblock[t - 14] ^ wblock[t - 16], 1);
    }

    a = hash[0];
    b = hash[1];
    c = hash[2];
    d = hash[3];
    e = hash[4];

    for (t = 0; t < 20; t++)
    {
        /* the following is faster than ((B & C) | ((~B) & D)) */
        temp =  ROTL32(a, 5) + (((c ^ d) & b) ^ d)
                + e + wblock[t] + 0x5A827999;
        e = d;
        d = c;
        c = ROTL32(b, 30);
        b = a;
        a = temp;
    }

    for (t = 20; t < 40; t++)
    {
        temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0x6ED9EBA1;
        e = d;
        d = c;
        c = ROTL32(b, 30);
        b = a;
        a = temp;
    }

    for (t = 40; t < 60; t++)
    {
        temp = ROTL32(a, 5) + ((b & c) | (b & d) | (c & d))
               + e + wblock[t] + 0x8F1BBCDC;
        e = d;
        d = c;
        c = ROTL32(b, 30);
        b = a;
        a = temp;
    }

    for (t = 60; t < 80; t++)
    {
        temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0xCA62C1D6;
        e = d;
        d = c;
        c = ROTL32(b, 30);
        b = a;
        a = temp;
    }

    hash[0] += a;
    hash[1] += b;
    hash[2] += c;
    hash[3] += d;
    hash[4] += e;
}


/*!
@brief      内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
@param      ctx  算法的上下文,记录中间数据,结果等
@param      msg  要进行计算的数据buffer
@param      size 长度
*/
static void zen_sha1_update(sha1_ctx *ctx,
                            const unsigned char *buf, 
                            size_t size)
{
    //为了让zen_sha1_update可以多次进入,长度可以累计
    ctx->length_ += size;

    //每个处理的块都是64字节
    while (size >= ZEN_SHA1_BLOCK_SIZE)
    {
        zen_sha1_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
        buf  += ZEN_SHA1_BLOCK_SIZE;
        size -= ZEN_SHA1_BLOCK_SIZE;
    }

    ctx->unprocessed_ = size;
}


/*!
@brief      内部函数,处理数据的最后部分,添加0x80,补0,增加长度信息
@param      ctx    算法的上下文,记录中间数据,结果等
@param      msg    要进行计算的数据buffer
@param      result 返回的结果
*/
static void zen_sha1_final(sha1_ctx *ctx, 
                           const unsigned char *msg,
                           size_t size, 
                           unsigned char *result)
{

    uint32_t message[ZEN_SHA1_BLOCK_SIZE / 4];

    //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
    if (ctx->unprocessed_)
    {
        memcpy(message, msg + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
    }

    //得到0x80要添加在的位置(在uint32_t 数组中),
    uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
    uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;

    //添加0x80进去,并且把余下的空间补充0
    message[index]   &= ~(0xFFFFFFFF << shift);
    message[index++] ^= 0x80 << shift;

    //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
    if (index > 14)
    {
        while (index < 16)
        {
            message[index++] = 0;
        }

        zen_sha1_process_block(ctx->hash_, message);
        index = 0;
    }

    //补0
    while (index < 14)
    {
        message[index++] = 0;
    }

    //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
    uint64_t data_len = (ctx->length_) << 3;

    //注意SHA1算法要求的64bit的长度是大头BIG-ENDIAN,在小头的世界要进行转换
#if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
    data_len = ZEN_SWAP_UINT64(data_len);
#endif

    message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
    message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);

    zen_sha1_process_block(ctx->hash_, message);

    //注意结果是大头党的,在小头的世界要进行转换
#if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
    swap_uint32_memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE);
#else
    memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE);
#endif
}



//计算一个内存数据的SHA1值
unsigned char *ZEN_LIB::sha1(const unsigned char *msg,
                             size_t size,
                             unsigned char result[ZEN_SHA1_HASH_SIZE])
{
    assert(result != NULL);

    sha1_ctx ctx;
    zen_sha1_init(&ctx);
    zen_sha1_update(&ctx, msg, size);
    zen_sha1_final(&ctx, msg, size, result);
    return result;
}

int main(int /*argc*/, char * /*argv*/[])
{

    int ret = 0;
    static unsigned char test_buf[7][81] =
    {
        { "" }, 
        { "a" },
        { "abc" },
        { "message digest" },
        { "abcdefghijklmnopqrstuvwxyz" },
        { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
        { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" }
    };

    static const size_t test_buflen[7] =
    {
        0, 1, 3, 14, 26, 62, 80
    };

    static const unsigned char md5_test_sum[7][16] =
    {
        { 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,  0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
        { 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8,  0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
        { 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0,  0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
        { 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D,  0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
        { 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00,  0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
        { 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5,  0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
        { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,  0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A }
    };
    unsigned char result[32] ={0};

    for(size_t i=0;i<7;++i)
    {
        ZEN_LIB::md5(test_buf[i],test_buflen[i],result);
        ret = memcmp(result,md5_test_sum[i],16);
        if (ret != 0)
        {
            assert(false);
        }
    }

    static const unsigned char sha1_test_sum[7][20] =
    {
        { 0xda,0x39,0xa3,0xee,0x5e,0x6b,0x4b,0x0d,0x32,0x55,0xbf,0xef,0x95,0x60,0x18,0x90,0xaf,0xd8,0x07,0x09 },
        { 0x86,0xf7,0xe4,0x37,0xfa,0xa5,0xa7,0xfc,0xe1,0x5d,0x1d,0xdc,0xb9,0xea,0xea,0xea,0x37,0x76,0x67,0xb8 },
        { 0xa9,0x99,0x3e,0x36,0x47,0x06,0x81,0x6a,0xba,0x3e,0x25,0x71,0x78,0x50,0xc2,0x6c,0x9c,0xd0,0xd8,0x9d },
        { 0xc1,0x22,0x52,0xce,0xda,0x8b,0xe8,0x99,0x4d,0x5f,0xa0,0x29,0x0a,0x47,0x23,0x1c,0x1d,0x16,0xaa,0xe3 },
        { 0x32,0xd1,0x0c,0x7b,0x8c,0xf9,0x65,0x70,0xca,0x04,0xce,0x37,0xf2,0xa1,0x9d,0x84,0x24,0x0d,0x3a,0x89 },
        { 0x76,0x1c,0x45,0x7b,0xf7,0x3b,0x14,0xd2,0x7e,0x9e,0x92,0x65,0xc4,0x6f,0x4b,0x4d,0xda,0x11,0xf9,0x40 },
        { 0x50,0xab,0xf5,0x70,0x6a,0x15,0x09,0x90,0xa0,0x8b,0x2c,0x5e,0xa4,0x0f,0xa0,0xe5,0x85,0x55,0x47,0x32 },
    };
    for(size_t i=0;i<7;++i)
    {
        ZEN_LIB::sha1(test_buf[i],test_buflen[i],result);
        ret = memcmp(result,sha1_test_sum[i],20);
        if (ret != 0)
        {
            assert(false);
        }
    }
    return 0;
}

 

posted @ 2016-11-21 15:15  unsignedu  阅读(961)  评论(0编辑  收藏  举报