CRS曲线拟合:centripetal Catmull-Rom spline

CRS曲线拟合

公式: https://en.wikipedia.org/wiki/Centripetal_Catmull–Rom_spline

代码实现(python):

import numpy, sys, math

# 首尾相接以保证闭合曲线,论文中有方法
def CatmullRomSpline(P0, P1, P2, P3, nPoints=100):
  """
  P0, P1, P2, and P3 should be (x,y,z) point triples that define the Catmull-Rom spline.
  nPoints is the number of points to include in this curve segment.
  """
  # Convert the points to numpy so that we can do array multiplication
  P0, P1, P2, P3 = map(numpy.array, [P0, P1, P2, P3])

  # Calculate t0 to t4
  alpha = 0.5
  def tj(ti, Pi, Pj):
    return sum([(i-j)**2 for i,j in zip(Pi,Pj)])**alpha + ti

  t0 = 0
  t1 = tj(t0, P0, P1)
  t2 = tj(t1, P1, P2)
  t3 = tj(t2, P2, P3)

  # Only calculate points between P1 and P2
  t = numpy.linspace(t1,t2,nPoints)

  # Reshape so that we can multiply by the points P0 to P3
  # and get a point for each value of t.
  t = t.reshape(len(t),1)
  A1 = (t1-t)/(t1-t0)*P0 + (t-t0)/(t1-t0)*P1
  A2 = (t2-t)/(t2-t1)*P1 + (t-t1)/(t2-t1)*P2
  A3 = (t3-t)/(t3-t2)*P2 + (t-t2)/(t3-t2)*P3
  if CatmullRomSpline.toDebug:
     print(t)
     print(A1)
     print(A2)
     print(A3)
  B1 = (t2-t)/(t2-t0)*A1 + (t-t0)/(t2-t0)*A2
  B2 = (t3-t)/(t3-t1)*A2 + (t-t1)/(t3-t1)*A3

  C  = (t2-t)/(t2-t1)*B1 + (t-t1)/(t2-t1)*B2
  return C

CatmullRomSpline.toDebug = False

def CatmullRomChain(P,nP=100):
  """
  Calculate Catmull Rom for a chain of points and return the combined curve.
  """
  sz = len(P)

  # The curve C will contain an array of (x,y,z) points.
  C = []
  for i in range(sz-3):
    c = CatmullRomSpline(P[i], P[i+1], P[i+2], P[i+3], nP)
    C.extend(c)
  return C

def readPlistFile(fname):
    """"Read a point list file, and retun a list of 3D coordinates."""

    plist = []
    try:
      f = open(fname, 'r')
    except IOError:
         print ('CatmullRom: Cannot open file %s for reading' % fname)
         raise
    for line in f:
        tempwords = [ t.strip('\n') for t in line.split(',') ]
        if len(tempwords) == 3:
           try:
               plist.append ([float(tempwords[0]), float(tempwords[1]), math.degrees(float(tempwords[2]))])
           except:
               print ('Número Inválido: %s\n' % tempwords)
               continue

    f.close()
    return plist

def main(argv=None):
    """
    Uses matplotlib for drawing a curve.
    """

    import pylab as plt

    if argv is None:
       argv = sys.argv

    # Define a set of points for curve to go through
    if len(argv) > 1:
       Points = readPlistFile(argv[1])
    else:
        # 一系列控制点
       # Points = [[0,1.5],[2,2],[3,1],[4,0.5],[5,1],[6,2],[7,3]]
        Points = [[79,  353], [87, 358], [126, 372], [77, 398], [21, 426], [5, 421], [5, 414], [0, 404], [2, 349], [9, 346],
                [26, 344], [47, 346], [59, 349]]
                
    # plt.plot(Points[0], Points[:, 1])
    x = [Points[i][0] for i in range(len(Points))]
    y = [Points[i][1] for i in range(len(Points))]
    plt.plot(x, y)

    # Turn debugging ON
    CatmullRomSpline.toDebug = False

    # Calculate the Catmull-Rom splines through the points
    c = CatmullRomChain(Points, nP=1024)

    # Convert the Catmull-Rom curve points into x and y arrays and plot
    x, y = zip(*c)
    plt.plot(x, y, 'r')

    # Plot the control points
    px, py = zip(*Points)
    plt.plot(px,py,'or')

    plt.show()

    # https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html
    # import matplotlib as mpl
    # from mpl_toolkits.mplot3d import Axes3D
    # import numpy as np
    # import matplotlib.pyplot as plt
    #
    # mpl.rcParams['legend.fontsize'] = 10
    #
    # fig = plt.figure()
    # ax = fig.gca(projection='3d')
    # #theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
    # #z = np.linspace(-2, 2, 100)
    # #r = z**2 + 1
    # #x = r * np.sin(theta)
    # #y = r * np.cos(theta)
    # ax.plot(x, y, z, label='spline curve')
    # ax.legend()
    #
    # plt.show()

if __name__=="__main__":
    sys.exit(main())
posted @ 2020-03-20 18:58  pigcv  阅读(1395)  评论(0编辑  收藏  举报