什么是迁移学习

迁移学习就是在一个很大的数据库上对模型进行预训练,再将这个预训练过的模型用于其他任务上,有点类似于 NLP 中的 Word Embedding。

举个例子,假设你有一个经过训练的 ML 模型 A 来识别动物的图片,你可以用 A 来训练识别狗的图片的模型 D。就数据而言,训练 D 需要向 A 添加一些额外的层,但是大大减少了训练 D 所需的数据量。

posted on 2020-02-19 09:37  耀扬  阅读(346)  评论(0编辑  收藏  举报

导航