[HAOI2007]上升序列
BZOJ/洛谷
刚开始时间复杂度估错了,只好看题解。\(O(n^2)\)的做法还写崩了,难受。
坑点:是下标字典序最小,不是字典序最小!
最原始的\(O(nlogn)\)做法中的\(f[i]\)表示的是以\(i\)结尾的\(LIS\)的最大长度,本题我们为了方便,倒着求最长下降子序列,于是\(f[i]\)表示的是以\(i\)开头的最长上升子序列长度。然后我们\(O(nlogn)\)地求出\(f\)数组。输出时就遍历一遍,复杂度\(O(nm)\)。
AC代码:
#include <cstdio>
#define N 100000
#define re register
int n, m, maxl, a[N+5], f[N+5], best[N+5], ans[N+5];
namespace mine {
inline char Getchar() {
static char buf[2048],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,2048,stdin),p1==p2)?EOF:*p1++;
}
inline int read() {
int s = 0; re char c = Getchar();
while(c < '0' || c > '9') c = Getchar();
while(c >= '0' && c <= '9') s = s*10+c-'0',c = Getchar();
return s;
}
template <typename T> T max(T _x, T _y){ return _x>_y?_x:_y; }
template <typename T> T min(T _x, T _y){ return _x<_y?_x:_y; }
}
using namespace std;
using namespace mine;
int find(int x) {
int l = 1, r = maxl, mid, ret = 0;
while(l <= r) {
mid = (l+r)/2;
if(best[mid] > x) l = mid+1, ret = mid;
else r = mid-1;
}
return ret;
}
void dp() {
for(int i = n, t; i >= 1; --i) {
t = find(a[i]);
maxl = max(maxl, t+1);
f[i] = t+1;
if(best[t+1] < a[i]) best[t+1] = a[i];
}
}
void print(int x) {
int last = 0;
for(int i = 1; i <= n; ++i) {
if(f[i] >= x && a[i] > last) {
printf("%d ", a[i]);
last = a[i];
x--;
if(!x) break;
}
}
printf("\n");
}
int main() {
n = read();
for(re int i = 1; i <= n; ++i) a[i] = read();
dp(); m = read();
for(int i = 1, t; i <= m; ++i) {
t = read();
if(t > maxl) puts("Impossible");
else print(t);
}
return 0;
}