莫比乌斯反演

对于定义在\(\mathbb{N}\)上的函数\(F(n)\)\(f(n)\),若满足:

\(F(n) = \sum\limits_{d\mid n}f(d)\)

则有:

\(f(n) = \sum\limits_{d\mid n}\mu(d)F(\frac{n}{d})\)

一个更常用的形式是:

若有:

\(F(n) = \sum\limits_{n\mid d}f(d)\)

则有:

\(f(n) = \sum\limits_{n\mid d}\mu(\frac{d}{n})F(d)\)

其中\(\mu(d)\)为莫比乌斯函数:

\(x = p_{1}^{a_{1}}p_{2}^{a_{2}}p_{3}^{a_{3}}\cdot\cdot\cdot p_{k-1}^{a_{k-1}}p_{k}^{a_{k}},p_{1},p_{2},p_{3} \cdot \cdot \cdot p_{k-1},p_{k}\in \mathbb{P}\)

则满足:

\(\mu(x) = \left\{\begin{matrix}&1 &,x = 1\\ &(-1)^{k} &,\forall i\in [1,k],a_{i}=1\\ &0 &,\exists i\in [1,k],a_{i}>1\end{matrix}\right.\)

证明如下:

\(\sum\limits_{d\mid n}\mu(d)F(\frac{n}{d}) = \sum\limits_{d\mid n}\mu(d)\sum\limits_{d^{'}\mid\frac{n}{d}}f(d^{'}) = \sum\limits_{d\mid n}\sum\limits_{d^{'}\mid\frac{n}{d}}\mu(d)f(d^{'}) = \sum\limits_{d^{'}\mid n}\sum\limits_{d\mid\frac{n}{d^{'}}}\mu(d)f(d^{'}) = \sum\limits_{d^{'}\mid n}f(d^{'})\sum\limits_{d\mid\frac{n}{d^{'}}}\mu(d) = f(n)\)

莫比乌斯函数还有两个很神奇的性质:
1.\(\sum_{d|n}\mu (d)=[n==1]\)
2.\(\sum_{d|n}\frac{\mu (d)}{d}=\frac {\phi (d)}{d}\)

以下为线性筛莫比乌斯函数的代码

int cnt, prime[N], mu[N], vis[N];

void get_mu(int n) {
    mu[1] = 1;
    for(int i = 2; i <= n; i++) {
        if(!vis[i]) pime[++cnt] = i, mu[i] = -1;
        for(int j = 1; j <= cnt && i*prime[j] <= n; j++) {
            vis[i*prime[j]] = 1;
            if(i%prime[j] == 0) {
                mu[i*prime[j]] = 0;
                break;
            }
            mu[i*prime[j]] = -mu[i]; 
        }
    }
}
posted @ 2018-06-21 18:49  dummyummy  阅读(217)  评论(2编辑  收藏  举报