min-max容斥

这玩意儿一般都是跟概率期望结合的吧,就是下面这个式子(\(max(S)\)代表集合\(S\)中的最大值,\(min(S)\)同理):

\[max(S)=\sum\limits_{T\subseteq S}(-1)^{\left | T \right |-1}min(T) \]

证明的话就考虑第\(k\)大的元素对\(max(S)\)的贡献就行了,把式子列出来之后你会发现它的贡献只有在\(k=1\)时才为\(1\),在\(k>1\)全部为\(0\)
能用它做的期望题一般都是这样的:每次操作把集合中的一个数从\(0\)变为\(1\),求全部的数都变为\(1\)的期望次数。
我们就令\(max(S)\)表示\(S\)中的元素全部变为\(1\)的期望次数,\(min(T)\)表示\(T\)中的元素至少有一个变为\(1\)的期望次数,那么它们也满足上面的那个式子(貌似是因为期望的线性性?)
给一道例题:HDU4336 Card Collector
不就是个板子吗。。。
还有一道[HAOI2015]按位或需要和\(FWT\)一起搞

posted @ 2019-02-27 14:21  dummyummy  阅读(372)  评论(0编辑  收藏  举报