Normalizing flows
probability VS likelihood:
https://zhuanlan.zhihu.com/p/25768606
https://www.psychologicalscience.org/observer/bayes-for-beginners-probability-and-likelihood
To approach MLE today, let’s come from the Bayesian angle, and use Bayes Theorem to frame our question as such:
P(β∣y) = P(y∣β) x P(β) / P(y)
Or, in English:
posterior = likelihood x prior / evidence
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步