随笔分类 - 科研进程
摘要:1. what is incremental learning? incremental learning is a method of machine learning in which input data is continuously used to extend the existing
阅读全文
摘要:1. know your data. 知道里面有哪些pattern,正常的pattern是什么,不正常的pattern是什么,点异常的情况是什么,模式异常的情况是什么。 异常: 已知 可以通过预处理处理掉的 不能通过预处理处理掉的,如何在loss部分进行处理。 未知 motif: 小的、细微的频繁出
阅读全文
摘要:像AAAI,IJCAI这种水会,投论文更多的像是掷筛子,随机性很大,你投不中不能说明你不好,你投中了也不能说明你强。 从审稿人角度考虑,如果这篇文章他看得懂,那他很可能会拒掉;如果他看不懂,那么他觉得这篇文章可能有价值,得琢磨一下。 纯方法类的文章研究和提升起来是很难的,很少有人做这个,所以作为普通
阅读全文
摘要:1. 了解有几种attention mechanism Seq2Seq, from a sequence input to a sequence output. Align & Translate, A potential problem of the vanilla Seq2Seq archite
阅读全文
摘要:2思考问题,写introduction的时候,是用领域问题描述,还是通用方法,如果数据特殊就说领域问题,但你需要指出这类领域数据的特点和scientific challenge.,比如能源的异常检测和其他的有啥区别,为什么传统方法不行。 通用方法创新要难一些。 introduction两方面,mot
阅读全文
摘要:From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learning: https://www.zhihu.com/question/264595128 2. w
阅读全文
摘要:1. NLP/IR/DM/ML Conference Deadlines(Updating) Two Principles of Deadlines:1. All deadlines converge on the same day—Deadline Day.2. Every day is Dead
阅读全文
摘要:From Michael I. Jordan As with many phrases that cross over from technical academic fields into general circulation, there is significant misunderstan
阅读全文
摘要:Problem: Design problem parameters consist of the search space of your model. Scientists design experiments to gain insights into physical and social
阅读全文
摘要:probability VS likelihood: https://zhuanlan.zhihu.com/p/25768606 http://sdsy888.me/%E9%9A%8F%E7%AC%94-Writing/2018/%E4%BC%BC%E7%84%B6%EF%BC%88likeliho
阅读全文
摘要:Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. Before: a discr
阅读全文
摘要:What is a search problem: A solution to a search problem is a sequence of actions (a path) from s0 to a goal state. It is optimal if it has minimum su
阅读全文
摘要:Why: real-world data are typically noisy, enormous in volume, and may originate from a hodgepodge of heterogeneous sources. mean; median; mode(most co
阅读全文