在linux下编写maven程序

1.在linux下安装eclipse-jee-kepler-SR2-linux-gtk.tar.gz
     并在桌面生成快捷方式
2.解压m2.tar.gz /root/
 
3.在maven程序/pom.xml添加引用,引用Hadoop,引用JDK
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.2.0</version>
        </dependency>
 
 
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>2.2.0</version>
        </dependency>
 
        <dependency>
            <groupId>jdk.tools</groupId>
            <artifactId>jdk.tools</artifactId>
            <version>1.7</version>
            <scope>system</scope>
            <systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
        </dependency>
4.编写DataCount,在这里,我们需要编写Map/Reduce两个阶段,一个负责读取数据并将有用的数据写入字节流中
     Map阶段:1.接收数据。2.传递数据
       public static class DCMapper extends Mapper<LongWritable, Text, Text, DataBean>
       {
              @Override
              protected void map(LongWritable key, Text value, Context context)
                           throws IOException, InterruptedException {
                     //1.jie shou shu ju
                     String line = value.toString();
                     String[] fields = line.split("\t");
                     String telNo = fields[1];
                     long up = Long.parseLong(fields[8]);
                     long down = Long.parseLong(fields[9]);
                     //2.chuan di shu ju
                     DataBean bean = new DataBean(telNo, up, down);
                     context.write(new Text(telNo), bean);
              }
       }
     Reduce阶段
 
       public static class DCReducer extends Reducer<Text, DataBean, Text, DataBean>
       {
              @Override
              protected void reduce(Text key, Iterable<DataBean> v2s,
                           Context context)
                           throws IOException, InterruptedException {
                     long up_sum = 0;
                     long down_sum = 0;
                     for (DataBean bean : v2s)
                     {
                           up_sum += bean.getUpPayLoad();
                           down_sum += bean.getDownPayLoad();
                     }
                     DataBean bean = new DataBean("", up_sum, down_sum);
                     context.write(key, bean);
              }
       }
5.Main方法,提供数据
       public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
              Configuration conf = new Configuration();
              Job job = Job.getInstance(conf);
              
              job.setJarByClass(DataCount.class);
              job.setMapperClass(DCMapper.class);
              // k2 v2 and k3 v3
              // job.setMapOutputKeyClass(Text.class);
              // job.setMapOutputValueClass(DataBean.class);
              FileInputFormat.setInputPaths(job, new Path(args[0]));
              
              job.setReducerClass(DCReducer.class);
              job.setOutputKeyClass(Text.class);
              job.setOutputValueClass(DataBean.class);
              FileOutputFormat.setOutputPath(job, new Path(args[1]));
              job.waitForCompletion(true);
       }
 
6.将程序打包成jar包,并上传到hdfs中,hadoop fs -put HTTP_20130313143750.dat /data.doc
7.运行hadoop程序,hadoop jar /root/examples.jar cn.itcast.hadoop.mr.dc.DataCount /data.doc /dataout
 
 
说明,如果期间报错,注意检查yarn进程是否启动。如没有启动yarn,需要启动yarn 
 
 
 
 
posted @ 2017-06-11 14:41  独立小桥风满袖  阅读(186)  评论(0编辑  收藏  举报