redis缓存数据
缓存数据的步骤
- 查询缓存,如果没有数据,则查询数据库
- 查询数据库,如果数据不为空,将结果写入缓存
缓存数据容易造成如下问题:
缓存穿透、缓存击穿、缓存失效
缓存穿透
什么叫缓存穿透?
一般的缓存系统,都是按照key去缓存查询,如果不存在对应的value,就应该去后端系统查找(比如DB)。如果key对应的value是一定不存在的,并且对该key并发请求量很大,就会对后端系统造成很大的压力。这就叫做缓存穿透。
如何解决?
1、对查询结果为空的情况也进行缓存,缓存时间设置短一点,或者该key对应的数据insert了之后清理缓存。
2、对一定不存在的key进行过滤。可以把所有的可能存在的key放到一个大的Bitmap中,查询时通过该bitmap过滤。(布隆表达式)
缓存雪崩(多个key)
什么叫缓存雪崩?
当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力。
如何解决?
1、在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
2、不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
3、做二级缓存,A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期(此点未补充)
缓存击穿(一个key)
什么叫缓存击穿?
对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。
缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
如何解决?
使用redis的setnx互斥锁先进行判断,这样其他线程就处于等待状态,保证不会有大并发操作去操作数据库。
if(redis.sexnx()==1){
//查询数据库
//加入线程
}