mapreduce实现学生平均成绩
思路:
首先从文本读入一行数据,按空格对字符串进行切割,切割后包含学生姓名和某一科的成绩,map输出key->学生姓名 value->某一个成绩
然后在reduce里面对成绩进行遍历求和,求平均数,然后输出key->学生姓名 value->平均成绩
源数据:
chines.txt
zhangsan 78 lisi 89 wangwu 96 zhaoliu 67
english.txt
zhangsan 80 lisi 82 wangwu 84 zhaoliu 86
math.txt
zhangsan 88 lisi 99 wangwu 66 zhaoliu 77
源代码:
package com.duking.hadoop; import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Mapper.Context; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.util.GenericOptionsParser; public class Score { public static class Map extends Mapper<Object, Text, Text, IntWritable> { // 实现map函数 public void map(Object key, Text value, Context context) throws IOException, InterruptedException { // 将输入的纯文本文件的数据转化成String String line = value.toString(); // 将输入的数据首先按行进行分割 StringTokenizer tokenizerArticle = new StringTokenizer(line); //以空格分隔字符串 // 分别对每一行进行处理 while (tokenizerArticle.hasMoreElements()) { String strName= tokenizerArticle.nextToken(); // 学生姓名部分 String strScore = tokenizerArticle.nextToken();// 成绩部分 Text name = new Text(strName); int scoreInt = Integer.parseInt(strScore); // 输出姓名和成绩 context.write(name, new IntWritable(scoreInt)); } } } public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { // 实现reduce函数 public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; int count = 0; Iterator<IntWritable> iterator = values.iterator(); //循环遍历成绩 while (iterator.hasNext()) { sum += iterator.next().get();// 计算总分 count++;// 统计总的科目数 } int average = (int) sum / count;// 计算平均成绩 context.write(key, new IntWritable(average)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); conf.set("mapred.job.tracker", "192.168.60.129:9000"); // 指定带运行参数的目录为输入输出目录 String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); /* * 指定工程下的input2为文件输入目录 output2为文件输出目录 String[] ioArgs = new String[] { * "input2", "output2" }; * * String[] otherArgs = new GenericOptionsParser(conf, ioArgs) * .getRemainingArgs(); */ if (otherArgs.length != 2) { // 判断路径参数是否为2个 System.err.println("Usage: Data Deduplication <in> <out>"); System.exit(2); } // set maprduce job name Job job = new Job(conf, "Score Average"); job.setJarByClass(Score.class); // 设置Map、Combine和Reduce处理类 job.setMapperClass(Map.class); job.setCombinerClass(Reduce.class); job.setReducerClass(Reduce.class); // 设置输出类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // 设置输入和输出目录 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }