mapreduce实现学生平均成绩

思路:

  首先从文本读入一行数据,按空格对字符串进行切割,切割后包含学生姓名和某一科的成绩,map输出key->学生姓名    value->某一个成绩

  然后在reduce里面对成绩进行遍历求和,求平均数,然后输出key->学生姓名    value->平均成绩

 

  源数据:

   chines.txt 

zhangsan    78
lisi    89
wangwu    96
zhaoliu    67

  english.txt

zhangsan    80
lisi    82
wangwu    84
zhaoliu    86

  math.txt

zhangsan    88
lisi    99
wangwu    66
zhaoliu    77

  源代码:

package com.duking.hadoop;

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.GenericOptionsParser;

public class Score {

	public static class Map extends

	Mapper<Object, Text, Text, IntWritable> {

		// 实现map函数

		public void map(Object key, Text value, Context context)

		throws IOException, InterruptedException {

			// 将输入的纯文本文件的数据转化成String

			String line = value.toString();

			// 将输入的数据首先按行进行分割

			StringTokenizer tokenizerArticle = new StringTokenizer(line);  //以空格分隔字符串

			// 分别对每一行进行处理

			while (tokenizerArticle.hasMoreElements()) {

				String strName= tokenizerArticle.nextToken();  // 学生姓名部分
				
				String strScore = tokenizerArticle.nextToken();// 成绩部分
				
                Text name = new Text(strName);

                int scoreInt = Integer.parseInt(strScore);
				// 输出姓名和成绩

				context.write(name, new IntWritable(scoreInt));

			}

		}

	}

	public static class Reduce extends

	Reducer<Text, IntWritable, Text, IntWritable> {

		// 实现reduce函数

		public void reduce(Text key, Iterable<IntWritable> values,

		Context context) throws IOException, InterruptedException {

			int sum = 0;

			int count = 0;

			Iterator<IntWritable> iterator = values.iterator();  //循环遍历成绩

			while (iterator.hasNext()) {

				sum += iterator.next().get();// 计算总分

				count++;// 统计总的科目数

			}

			int average = (int) sum / count;// 计算平均成绩

			context.write(key, new IntWritable(average));

		}

	}

	public static void main(String[] args) throws Exception {

		Configuration conf = new Configuration();

		conf.set("mapred.job.tracker", "192.168.60.129:9000");

		// 指定带运行参数的目录为输入输出目录
		String[] otherArgs = new GenericOptionsParser(conf, args)
				.getRemainingArgs();

		/*
		 * 指定工程下的input2为文件输入目录 output2为文件输出目录 String[] ioArgs = new String[] {
		 * "input2", "output2" };
		 * 
		 * String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
		 * .getRemainingArgs();
		 */

		if (otherArgs.length != 2) { // 判断路径参数是否为2个

			System.err.println("Usage: Data Deduplication <in> <out>");

			System.exit(2);

		}

		// set maprduce job name
		Job job = new Job(conf, "Score Average");

		job.setJarByClass(Score.class);

		// 设置Map、Combine和Reduce处理类

		job.setMapperClass(Map.class);

		job.setCombinerClass(Reduce.class);

		job.setReducerClass(Reduce.class);

		// 设置输出类型

		job.setOutputKeyClass(Text.class);

		job.setOutputValueClass(IntWritable.class);

		// 设置输入和输出目录

		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

		System.exit(job.waitForCompletion(true) ? 0 : 1);

	}

}

  

posted @ 2016-11-15 15:35  OnTheWay_duking  阅读(4247)  评论(0编辑  收藏  举报