【数论】如何证明gcd/exgcd

我恨数论

因为打这篇的时候以为a|b是a是b的倍数,但是懒得改了,索性定义 a|b 为 a是b的倍数

 

 

咳咳,那么进入正题,如何证明gcd,也就是 gcd(a,b) = gcd(b,a%b)?

首先,设

p = a/b,c = a mod b

则a = p*b + c

m = gcd(a,b),n = gcd(b,c)

 

因为m = gcd(a,b),所以 a | m 且 b | m

因为 b | m

所以 b * p | m                //  a|b,则a*k|b (k为整数)

因为a | m

所以a - b * p | m           //   a|b,则k*b - a | b (k为整数)

因为 a = p*b + c

所以 c = a - p*b

所以 c | m

因为c | m,且b | m

所以m为 c,b的公约数

因为n为 c,b的最大公约数

所以m <= n

 

因为n = gcd(b,c)

所以 b | n , c | n

因为 b | n

所以 b * p | n

因为 c | n

所以 b * p + c | n

因为 a = b * p + c

所以a | n

因为a | n,且 b | n

则n为a,b的公约数

因为m为a,b的最大公约数

所以 n <= m

因为m <= n

所以m = n

所以gcd(a,b) = gcd(b,c)

所以gcd(a,b) = gcd(b,a%b)

 

整体思路是:

先设出一个关系,然后通过关系证明它们的另一个关系

从gcd(a,b)转换得到b,c是公约数关系,

从gcd(b,c)转换得到a,b是公约数关系,

分别得到它们的大小关系,最后求公共解集,得到两个gcd相等

然后把c带上去,得到我们要证的式子

 

证完了gcd,下面可以证exgcd

exgcd 可以求

ax + by = gcd(a,b) 中的x,y

那么,我们设

ax1 + by1 = gcd(a,b)

由gcd得出

ax1 + by1 = gcd(b,a mod b)

设bx2 + a mod b y2 = gcd(b,a mod b)

下面用x2开始化简:

gcd(b, a mod b) = b * x2 + a mod b *y2 

gcd(b, a mod b) = b * x2 + (a - floor(a/b) * b) * y2

gcd(b, a mod b) = b * x2 + a * y2 - floor(a/b) * b * y2

gcd(b, a mod b) = a * y2 + b * x2 - floor(a/b) * b * y2

gcd(b, a mod b) = a * y2 + b * (x2 - floor(a/b) * y2)

所以

ax1 + by1 = gcd(b, a mod b) = bx2 + a mod b y2 = a * y2 + b * (x2 - floor(a/b) * y2)

所以第一个式子与最后一个式子等量代换得到

x1 = y2

y1 = x2 - floor(a/b) * y2

然后可以通过以上等价式子写出递归,得到x1、y1。

 

posted @ 2019-10-03 19:28  dudujerry  阅读(244)  评论(0编辑  收藏  举报