RDD之三:RDD创建方式
RDD创建方式
1)从Hadoop文件系统(如HDFS、Hive、HBase)输入创建。
2)从父RDD转换得到新RDD。
3)通过parallelize或makeRDD将单机数据创建为分布式RDD。
2)从父RDD转换得到新RDD。
3)通过parallelize或makeRDD将单机数据创建为分布式RDD。
4)基于DB(Mysql)、NoSQL(HBase)、S3(SC3)、数据流创建。
从集合创建RDD
- parallelize
def parallelize[T](seq: Seq[T], numSlices: Int = defaultParallelism)(implicit arg0: ClassTag[T]): RDD[T]
从一个Seq集合创建RDD。
参数1:Seq集合,必须。
参数2:分区数,默认为该Application分配到的资源的CPU核数
- scala> var rdd = sc.parallelize(1 to 10)
- rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :21
- scala> rdd.collect
- res3: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
- scala> rdd.partitions.size
- res4: Int = 15
- //设置RDD为3个分区
- scala> var rdd2 = sc.parallelize(1 to 10,3)
- rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at :21
- scala> rdd2.collect
- res5: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
- scala> rdd2.partitions.size
- res6: Int = 3
- makeRDD
def makeRDD[T](seq: Seq[T], numSlices: Int = defaultParallelism)(implicit arg0: ClassTag[T]): RDD[T]
这种用法和parallelize完全相同
def makeRDD[T](seq: Seq[(T, Seq[String])])(implicit arg0: ClassTag[T]): RDD[T]
该用法可以指定每一个分区的preferredLocations。
- scala> var collect = Seq((1 to 10,Seq("slave007.lxw1234.com","slave002.lxw1234.com")),
- (11 to 15,Seq("slave013.lxw1234.com","slave015.lxw1234.com")))
- collect: Seq[(scala.collection.immutable.Range.Inclusive, Seq[String])] = List((Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
- List(slave007.lxw1234.com, slave002.lxw1234.com)), (Range(11, 12, 13, 14, 15),List(slave013.lxw1234.com, slave015.lxw1234.com)))
- scala> var rdd = sc.makeRDD(collect)
- rdd: org.apache.spark.rdd.RDD[scala.collection.immutable.Range.Inclusive] = ParallelCollectionRDD[6] at makeRDD at :23
- scala> rdd.partitions.size
- res33: Int = 2
- scala> rdd.preferredLocations(rdd.partitions(0))
- res34: Seq[String] = List(slave007.lxw1234.com, slave002.lxw1234.com)
- scala> rdd.preferredLocations(rdd.partitions(1))
- res35: Seq[String] = List(slave013.lxw1234.com, slave015.lxw1234.com)
指定分区的优先位置,对后续的调度优化有帮助。
从外部存储创建RDD
- textFile
//从hdfs文件创建.
- //从hdfs文件创建
- scala> var rdd = sc.textFile("hdfs:///tmp/lxw1234/1.txt")
- rdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[26] at textFile at :21
- scala> rdd.count
- res48: Long = 4
- //从本地文件创建
- scala> var rdd = sc.textFile("file:///etc/hadoop/conf/core-site.xml")
- rdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[28] at textFile at :21
- scala> rdd.count
- res49: Long = 97
注意这里的本地文件路径需要在Driver和Executor端存在。
- 从其他HDFS文件格式创建
hadoopFile
sequenceFile
objectFile
newAPIHadoopFile
- 从Hadoop接口API创建
hadoopRDD
newAPIHadoopRDD
比如:从Hbase创建RDD
- scala> import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}
- import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}
- scala> import org.apache.hadoop.hbase.mapreduce.TableInputFormat
- import org.apache.hadoop.hbase.mapreduce.TableInputFormat
- scala> import org.apache.hadoop.hbase.client.HBaseAdmin
- import org.apache.hadoop.hbase.client.HBaseAdmin
- scala> val conf = HBaseConfiguration.create()
- scala> conf.set(TableInputFormat.INPUT_TABLE,"lxw1234")
- scala> var hbaseRDD = sc.newAPIHadoopRDD(
- conf,classOf[org.apache.hadoop.hbase.mapreduce.TableInputFormat],classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],classOf[org.apache.hadoop.hbase.client.Result])
- scala> hbaseRDD.count
- res52: Long = 1