Java的自动装箱与拆箱(Autoboxing and unboxing)

一、什么是自动装箱拆箱 

很简单,下面两句代码就可以看到装箱和拆箱过程

//自动装箱
Integer total = 99;

//自动拆箱
int totalprim = total;

简单一点说,装箱就是自动将基本数据类型转换为包装器类型;拆箱就是自动将包装器类型转换为基本数据类型。

下面我们来看看需要装箱拆箱的类型有哪些:

 

这个过程是自动执行的,那么我们需要看看它的执行过程:

package com.dxz.base;

public class Main {
    public static void main(String[] args) {
        // 自动装箱
        Integer total = 99;

        // 自定拆箱
        int totalprim = total;
    }
}

反编译class文件之后得到如下内容:

D:\gitspace\Test\bin\com\dxz\base>javap -c Main.class
Compiled from "Main.java"
public class com.dxz.base.Main {
  public com.dxz.base.Main();
    Code:
       0: aload_0
       1: invokespecial #8                  // Method java/lang/Object."<init>":()V
       4: return

  public static void main(java.lang.String[]);
    Code:
       0: bipush        99
       2: invokestatic  #16                 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
       5: astore_1
       6: aload_1
       7: invokevirtual #22                 // Method java/lang/Integer.intValue:()I
      10: istore_2
      11: return
}

D:\gitspace\Test\bin\com\dxz\base>

Integer total = 99; 
执行上面那句代码的时候,系统为我们执行了: 
Integer total = Integer.valueOf(99);

int totalprim = total; 
执行上面那句代码的时候,系统为我们执行了: 
int totalprim = total.intValue();

二、Integer源码分析

我们现在就以Integer为例,来分析一下它的源码: 

2.1、首先来看看Integer.valueOf函数

    public static Integer valueOf(int i) {
        if (i >= IntegerCache.low && i <= IntegerCache.high)
            return IntegerCache.cache[i + (-IntegerCache.low)];
        return new Integer(i);
    }

Integer内部的做了一个缓存,cache数组,缓存了-128到127共256Integer对象,每次创建Integer对象的时候,如果值在指定范围内【-128,127】,就会从缓存中取,否则就会重新new一个。

IntegerCache是Integer的静态内部类,源码如下:

    private static class IntegerCache {
        static final int low = -128;
        static final int high;
        static final Integer cache[];

        static {
            // high value may be configured by property
            int h = 127;
            String integerCacheHighPropValue =
                sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
            if (integerCacheHighPropValue != null) {
                try {
                    int i = parseInt(integerCacheHighPropValue);
                    i = Math.max(i, 127);
                    // Maximum array size is Integer.MAX_VALUE
                    h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
                } catch( NumberFormatException nfe) {
                    // If the property cannot be parsed into an int, ignore it.
                }
            }
            high = h;

            cache = new Integer[(high - low) + 1];
            int j = low;
            for(int k = 0; k < cache.length; k++)
                cache[k] = new Integer(j++);

            // range [-128, 127] must be interned (JLS7 5.1.7)
            assert IntegerCache.high >= 127;
        }

        private IntegerCache() {}
    }

从上面的static方法中,可知:

  1. low的值是-128;
  2. high的默认值是127,也可以通过java.lang.Integer.IntegerCache.high的参数指定(通过 JVM 的启动参数 -XX:AutoBoxCacheMax=size 修改)
  3. 遍历给指定范围的数据赋值

2.2、Integer的构造函数

首先我们来看看Integer的构造函数:

    private final int value;

    public Integer(int value) {
        this.value = value;
    }

    public Integer(String s) throws NumberFormatException {
        this.value = parseInt(s, 10);
    }

它里面定义了一个value变量,创建一个Integer对象,就会给这个变量初始化。第二个传入的是一个String变量,它会先把它转换成一个int值,然后进行初始化。

所以我们这里可以总结一点:装箱的过程会创建对应的对象,这个会消耗内存,所以装箱的过程会增加内存的消耗,影响性能。

 

三、相关问题 

上面我们看到在Integer的构造函数中,它分两种情况: 

1、i >= 128 || i < -128 =====> new Integer(i) 
2、i < 128 && i >= -128 =====> IntegerCache.cache[i + (-IntegerCache.low)]

SMALL_VALUES本来已经被创建好,也就是说在i >= 128 || i < -128是会创建不同的对象,在i < 128 && i >= -128会根据i的值返回已经创建好的指定的对象。

说这些可能还不是很明白,下面我们来举个例子吧:

package com.dxz.base;

public class Main {
    public static void main(String[] args) {

        Integer i1 = 100;
        Integer i2 = 100;
        Integer i3 = 200;
        Integer i4 = 200;

        System.out.println(i1 == i2); // true
        System.out.println(i3 == i4); // false
    }
}

 

代码的后面,我们可以看到它们的执行结果是不一样的,为什么,在看看我们上面的说明。 
1、i1和i2会进行自动装箱,执行了valueOf函数,它们的值在(-128,128]这个范围内,它们会拿到缓存数组里面的同一个对象IntegerCache[228],它们引用到了同一个Integer对象,所以它们肯定是相等的。

2、i3和i4也会进行自动装箱,执行了valueOf函数,它们的值大于128,所以会执行new Integer(200),也就是说它们会分别创建两个不同的对象,所以它们肯定不等。

下面我们来看看另外一个例子:

package com.dxz.base;

public class Main {
    public static void main(String[] args) {

        Double i1 = 100.0;
        Double i2 = 100.0;
        Double i3 = 200.0;
        Double i4 = 200.0;

        System.out.println(i1 == i2); // false
        System.out.println(i3 == i4); // false
    }
}

 

看看上面的执行结果,跟Integer不一样,这样也不必奇怪,因为它们的valueOf实现不一样,结果肯定不一样,那为什么它们不统一一下呢? 
这个很好理解,因为对于Integer,在(-128,128]之间只有固定的256个值,所以为了避免多次创建对象,我们事先就创建好一个大小为256的Integer数组IntegerCache,所以如果值在这个范围内,就可以直接返回我们事先创建好的对象就可以了。

但是对于Double类型来说,我们就不能这样做,因为它在这个范围内个数是无限的。 
总结一句就是:在某个范围内的整型数值的个数是有限的,而浮点数却不是。

所以在Double里面的做法很直接,就是直接创建一个对象,所以每次创建的对象都不一样。

    public static Double valueOf(double d) {
        return new Double(d);
    }

 

下面我们进行一个归类: 
Integer派别:Integer、Short、Byte、Character、Long这几个类的valueOf方法的实现是类似的。 
Double派别:Double、Float的valueOf方法的实现是类似的。每次都返回不同的对象。

下面对Integer派别进行一个总结,如下图: 

下面我们来看看另外一种情况:

复制代码
 1 public class Main {
 2     public static void main(String[] args) {
 3 
 4         Boolean i1 = false;
 5         Boolean i2 = false;
 6         Boolean i3 = true;
 7         Boolean i4 = true;
 8 
 9         System.out.println(i1==i2);//true
10         System.out.println(i3==i4);//true
11     }
12 }
复制代码

可以看到返回的都是true,也就是它们执行valueOf返回的都是相同的对象。

public static Boolean valueOf(boolean b) {
return (b ? TRUE : FALSE);
}

可以看到它并没有创建对象,因为在内部已经提前创建好两个对象,因为它只有两种情况,这样也是为了避免重复创建太多的对象。

 public static final Boolean TRUE = new Boolean(true);
 
 public static final Boolean FALSE = new Boolean(false);

上面把几种情况都介绍到了,下面来进一步讨论其他情况。

1 Integer num1 = 400;  
2 int num2 = 400;  
3 System.out.println(num1 == num2); //true
说明num1 == num2进行了拆箱操作
1 Integer num1 = 100;  
2 int num2 = 100;  
3 System.out.println(num1.equals(num2));  //true

我们先来看看equals源码:

1 @Override
2 public boolean equals(Object o) {
3     return (o instanceof Integer) && (((Integer) o).value == value);
4 }

我们指定equal比较的是内容本身,并且我们也可以看到equal的参数是一个Object对象,我们传入的是一个int类型,所以首先会进行装箱,然后比较,之所以返回true,是由于它比较的是对象里面的value值。

1 Integer num1 = 100;  
2 int num2 = 100;  
3 Long num3 = 200l;  
4 System.out.println(num1 + num2);  //200
5 System.out.println(num3 == (num1 + num2));  //true
6 System.out.println(num3.equals(num1 + num2));  //false

1、当一个基础数据类型与封装类进行==、+、-、*、/运算时,会将封装类进行拆箱,对基础数据类型进行运算。 
2、对于num3.equals(num1 + num2)为false的原因很简单,我们还是根据代码实现来说明:

1 @Override
2 public boolean equals(Object o) {
3     return (o instanceof Long) && (((Long) o).value == value);
4 }

它必须满足两个条件才为true: 
1、类型相同 
2、内容相同 
上面返回false的原因就是类型不同。

1 Integer num1 = 100;
2 Ingeger num2 = 200;
3 Long num3 = 300l;
4 System.out.println(num3 == (num1 + num2)); //true

我们来反编译一些这个class文件:javap -c StringTest 
这里写图片描述

可以看到运算的时候首先对num3进行拆箱(执行num3的longValue得到基础类型为long的值300),然后对num1和mum2进行拆箱(分别执行了num1和num2的intValue得到基础类型为int的值100和200),然后进行相关的基础运算。

我们来对基础类型进行一个测试:

1 int num1 = 100;
2 int num2 = 200;
3 long mum3 = 300;
4 System.out.println(num3 == (num1 + num2)); //true

就说明了为什么最上面会返回true.

所以,当 “==”运算符的两个操作数都是 包装器类型的引用,则是比较指向的是否是同一个对象,而如果其中有一个操作数是表达式(即包含算术运算)则比较的是数值(即会触发自动拆箱的过程)。

陷阱1:

1  Integer integer100=null;  
2  int int100=integer100;

这两行代码是完全合法的,完全能够通过编译的,但是在运行时,就会抛出空指针异常。其中,integer100为Integer类型的对象,它当然可以指向null。但在第二行时,就会对integer100进行拆箱,也就是对一个null对象执行intValue()方法,当然会抛出空指针异常。所以,有拆箱操作时一定要特别注意封装类对象是否为null。

总结: 
1、需要知道什么时候会引发装箱和拆箱 
2、装箱操作会创建对象,频繁的装箱操作会消耗许多内存,影响性能,所以可以避免装箱的时候应该尽量避免。

3、equals(Object o) 因为原equals方法中的参数类型是封装类型,所传入的参数类型(a)是原始数据类型,所以会自动对其装箱,反之,会对其进行拆箱

4、当两种不同类型用==比较时,包装器类的需要拆箱, 当同种类型用==比较时,会自动拆箱或者装箱

转载:https://www.cnblogs.com/wang-yaz/p/8516151.html

posted on 2015-10-15 09:32  duanxz  阅读(1372)  评论(0编辑  收藏  举报