Spark Streaming之三:DStream解析

DStream

1.1基本说明

1.1.1 Duration

Spark Streaming的时间类型,单位是毫秒;

生成方式如下:

1)new Duration(milli seconds)

输入毫秒数值来生成;

2)seconds(seconds)

输入秒数值来生成;

3)Minutes(minutes)

输入分钟数值来生成;

1.1.2 slideDuration

/** Time interval after which the DStream generates a RDD */
  def slideDuration: Duration

slideDuration,时间窗口滑动长度;根据这个时间长度来生成一个RDD;

1.1.3 dependencies

/** List of parent DStreams on which this DStream depends on */
  def dependencies: List[DStream[_]]

dependencies,DStreams的依赖关系;

1.1.4 compute

/** Method that generates a RDD for the given time */
  def compute(validTime: Time): Option[RDD[T]]

compute,根据给定的时间来生成RDD;

1.1.5 zeroTime

// Time zero for the DStream
  private[streaming] var zeroTime: Time = null

zeroTime,DStream的起点时间;

1.1.6 rememberDuration

// Duration for which the DStream will remember each RDD created
  private[streaming] var rememberDuration: Duration = null

rememberDuration,记录DStream中每个RDD的产生时间;

1.1 7 storageLevel

// Storage level of the RDDs in the stream
  private[streaming] var storageLevel: StorageLevel = StorageLevel.NONE

storageLevel,DStream中每个RDD的存储级别;

1.1.8 parentRememberDuration

// Duration for which the DStream requires its parent DStream to remember each RDD created
  private[streaming] def parentRememberDuration = rememberDuration

parentRememberDuration,父DStream记录RDD的生成时间;

1.1.9 persist

/** Persist the RDDs of this DStream with the given storage level */
  def persist(level: StorageLevel): DStream[T] = {
    if (this.isInitialized) {
      throw new UnsupportedOperationException(
        "Cannot change storage level of a DStream after streaming context has started")
    }
    this.storageLevel = level
    this
  }

Persist,DStream中RDD的存储级别;

1.1.10 checkpoint

  /**
   * Enable periodic checkpointing of RDDs of this DStream
   * @param interval Time interval after which generated RDD will be checkpointed
   */
  def checkpoint(interval: Duration): DStream[T] = {
    if (isInitialized) {
      throw new UnsupportedOperationException(
        "Cannot change checkpoint interval of a DStream after streaming context has started")
    }
    persist()
    checkpointDuration = interval
    this
  }

checkpoint,设置DStream的checkpoint时间间隔;

1.1.11 initialize

  /**
   * Initialize the DStream by setting the "zero" time, based on which
   * the validity of future times is calculated. This method also recursively initializes
   * its parent DStreams.
   */
  private[streaming] def initialize(time: Time) {
    if (zeroTime != null && zeroTime != time) {
      throw new SparkException(s"ZeroTime is already initialized to $zeroTime"
        + s", cannot initialize it again to $time")
    }
    zeroTime = time

    // Set the checkpoint interval to be slideDuration or 10 seconds, which ever is larger
    if (mustCheckpoint && checkpointDuration == null) {
      checkpointDuration = slideDuration * math.ceil(Seconds(10) / slideDuration).toInt
      logInfo(s"Checkpoint interval automatically set to $checkpointDuration")
    }

    // Set the minimum value of the rememberDuration if not already set
    var minRememberDuration = slideDuration
    if (checkpointDuration != null && minRememberDuration <= checkpointDuration) {
      // times 2 just to be sure that the latest checkpoint is not forgotten (#paranoia)
      minRememberDuration = checkpointDuration * 2
    }
    if (rememberDuration == null || rememberDuration < minRememberDuration) {
      rememberDuration = minRememberDuration
    }

    // Initialize the dependencies
    dependencies.foreach(_.initialize(zeroTime))
  }

initialize,DStream初始化,其初始时间通过"zero" time设置;

1.1.12 getOrCompute

  /**
   * Get the RDD corresponding to the given time; either retrieve it from cache
   * or compute-and-cache it.
   */
  private[streaming] final def getOrCompute(time: Time): Option[RDD[T]] = {

getOrCompute,通过时间参数获取RDD;

1.1.13 generateJob

  /**
   * Generate a SparkStreaming job for the given time. This is an internal method that
   * should not be called directly. This default implementation creates a job
   * that materializes the corresponding RDD. Subclasses of DStream may override this
   * to generate their own jobs.
   */
  private[streaming] def generateJob(time: Time): Option[Job] = {
    getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => {
          val emptyFunc = { (iterator: Iterator[T]) => {} }
          context.sparkContext.runJob(rdd, emptyFunc)
        }
        Some(new Job(time, jobFunc))
      case None => None
    }
  }

generateJob,内部方法,来生成SparkStreaming的作业。

1.1.14 clearMetadata

 /**

  *Clear metadata that are older than `rememberDuration` of this DStream.

  * This is an internal method that should notbe called directly. This default

  * implementation clears the old generatedRDDs. Subclasses of DStream may override

  * this to clear their own metadata alongwith the generated RDDs.

  */

 private[streaming]defclearMetadata(time: Time) {

clearMetadata,内部方法,清除DStream中过期的数据。

1.1.15 updateCheckpointData

 /**

  * Refresh the list of checkpointed RDDs thatwill be saved along with checkpoint of

  * this stream. This is an internal methodthat should not be called directly. This is

  * a default implementation that saves onlythe file names of the checkpointed RDDs to

  * checkpointData. Subclasses of DStream(especially those of InputDStream) may override

  * this method to save custom checkpointdata.

  */

 private[streaming]defupdateCheckpointData(currentTime:Time) {

updateCheckpointData,内部方法,更新Checkpoint。

1.2 DStream基本操作

1.2.1 map

 /** Return a newDStreamby applying a function toall elements of this DStream. */

 defmap[U: ClassTag](mapFunc: T=> U): DStream[U] = {

   newMappedDStream(this, context.sparkContext.clean(mapFunc))

 }

Map操作,对DStream中所有元素进行Map操作,和RDD中的操作一样。

1.2.2 flatMap

 /**

  * Return a new DStream by applying afunction to all elements of this DStream,

  * and then flattening the results

  */

 defflatMap[U:ClassTag](flatMapFunc: T => Traversable[U]): DStream[U] = {

   newFlatMappedDStream(this, context.sparkContext.clean(flatMapFunc))

 }

flatMap操作,对DStream中所有元素进行flatMap操作,和RDD中的操作一样。

1.2.3filter

 /** Return a new DStream containing only the elements that satisfy apredicate. */

 def filter(filterFunc: T => Boolean): DStream[T] = newFilteredDStream(this, filterFunc)

filter操作,对DStream中所有元素进行过滤,和RDD中的操作一样。

1.2.4 glom

 /**

  * Return a new DStream in which each RDD isgenerated by applying glom() to each RDD of

  * this DStream. Applying glom() to an RDD coalescesall elements within each partition into

  * an array.

  */

 defglom(): DStream[Array[T]] =new GlommedDStream(this)

glom操作,对DStream中RDD的所有元素聚合,数组形式返回。

1.2.5 repartition

 /**

  * Return a new DStream with an increased ordecreased level of parallelism. Each RDD in the

  * returned DStream has exactly numPartitionspartitions.

  */

 defrepartition(numPartitions: Int):DStream[T] =this.transform(_.repartition(numPartitions))

repartition操作,对DStream中RDD重新分区,和RDD中的操作一样。

1.2.6 mapPartitions

 /**

  * Return a new DStream in which each RDD isgenerated by applying mapPartitions() to each RDDs

  * of this DStream. Applying mapPartitions()to an RDD applies a function to each partition

  * of the RDD.

  */

 defmapPartitions[U:ClassTag](

     mapPartFunc: Iterator[T] => Iterator[U],

     preservePartitioning: Boolean = false

   ): DStream[U] = {

   newMapPartitionedDStream(this, context.sparkContext.clean(mapPartFunc), preservePartitioning)

 }

mapPartitions操作,对DStream中RDD进行mapPartitions操作,和RDD中的操作一样。

1.2.7 reduce

 /**

  * Return a new DStream in which each RDD hasa single element generated by reducing each RDD

  * of this DStream.

  */

 defreduce(reduceFunc:(T, T) => T): DStream[T] =

   this.map(x => (null, x)).reduceByKey(reduceFunc, 1).map(_._2)

reduce操作,对DStream中RDD进行reduce操作,和RDD中的操作一样。

1.2.8 count

  /**

  * Return a new DStream in which each RDD hasa single element generated by counting each RDD

  * of this DStream.

  */

 defcount(): DStream[Long] = {

   this.map(_=> (null,1L))

       .transform(_.union(context.sparkContext.makeRDD(Seq((null,0L)),1)))

       .reduceByKey(_ + _)

       .map(_._2)

 }

count操作,对DStream中RDD进行count操作,和RDD中的操作一样。

1.2.9 countByValue

 /**

  * Return a new DStream in which each RDDcontains the counts of each distinct value in

  * each RDD of this DStream. Hashpartitioning is used to generate

  * the RDDs with `numPartitions` partitions(Spark's default number of partitions if

  * `numPartitions` not specified).

  */

 defcountByValue(numPartitions:Int = ssc.sc.defaultParallelism)(implicit ord: Ordering[T] = null)

     : DStream[(T, Long)] =

   this.map(x => (x, 1L)).reduceByKey((x: Long, y: Long) => x +y, numPartitions)

countByValue操作,对DStream中RDD进行countByValue操作,和RDD中的操作一样。

1.2.10 foreachRDD

 /**

  * Apply a function to each RDD in thisDStream. This is an output operator, so

  * 'this' DStream will be registered as anoutput stream and therefore materialized.

  */

 defforeachRDD(foreachFunc:(RDD[T], Time) => Unit) {

   // because the DStream is reachable from the outer objecthere, and because

   // DStreams can't be serialized with closures, we can'tproactively check

   // it for serializability and so we pass the optionalfalse to SparkContext.clean

   newForEachDStream(this, context.sparkContext.clean(foreachFunc, false)).register()

 }

foreachRDD操作,对DStream中RDD进行函数操作,该操作是一个输出操作。

1.2.11 transform

 /**

  * Return a new DStream in which each RDD isgenerated by applying a function

  * on each RDD of 'this' DStream.

  */

 deftransform[U:ClassTag](transformFunc: RDD[T] => RDD[U]): DStream[U] = {

   // because the DStream is reachable from the outer objecthere, and because

   // DStreams can't be serialized with closures, we can'tproactively check

   // it for serializability and so we pass the optionalfalse to SparkContext.clean

   transform((r: RDD[T], t: Time) =>context.sparkContext.clean(transformFunc(r),false))

 }

transform操作,对DStream中RDD进行transform函数操作

1.2.12 transformWith

 /**

  * Return a new DStream in which each RDD isgenerated by applying a function

  * on each RDD of 'this' DStream and 'other'DStream.

  */

 deftransformWith[U: ClassTag,V: ClassTag](

     other: DStream[U], transformFunc:(RDD[T], RDD[U]) => RDD[V]

   ): DStream[V] = {

   // because the DStream is reachable from the outer objecthere, and because

   // DStreams can't be serialized with closures, we can'tproactively check

   // it for serializability and so we pass the optionalfalse to SparkContext.clean

   valcleanedF = ssc.sparkContext.clean(transformFunc, false)

   transformWith(other, (rdd1: RDD[T], rdd2:RDD[U], time: Time) => cleanedF(rdd1, rdd2))

 }

transformWith操作,对DStream与其它DStream进行transform函数操作。

1.2.13 print

 /**

  * Print the first ten elements of each RDDgenerated in this DStream. This is an output

  * operator, so this DStream will beregistered as an output stream and there materialized.

  */

 defprint() {

   defforeachFunc = (rdd: RDD[T], time: Time) => {

     valfirst11 = rdd.take(11)

     println ("-------------------------------------------")

     println ("Time: " + time)

     println ("-------------------------------------------")

     first11.take(10).foreach(println)

     if(first11.size > 10) println("...")

     println()

   }

   newForEachDStream(this, context.sparkContext.clean(foreachFunc)).register()

 }

print操作,对DStream进行打印输出,这是一个输出操作。

1.2.14 window

/**

  * Return a new DStream in which each RDDcontains all the elements in seen in a

  * sliding window of time over this DStream.The new DStream generates RDDs with

  * the same interval as this DStream.

  * @param windowDuration width of thewindow; must be a multiple of this DStream's interval.

  */

 defwindow(windowDuration:Duration): DStream[T] = window(windowDuration,this.slideDuration)

 

 /**

  * Return a new DStreaminwhich each RDD contains all the elements in seen in a

  * sliding window of time over this DStream.

  * @param windowDuration width of thewindow; must be a multiple of this DStream's

  *                       batching interval

  * @param slideDuration  sliding interval of the window (i.e., theinterval after which

  *                       the new DStream willgenerate RDDs); must be a multiple of this

  *                       DStream's batchinginterval

  */

 def window(windowDuration:Duration, slideDuration: Duration): DStream[T] = {

   newWindowedDStream(this, windowDuration, slideDuration)

 }

window操作,设置窗口时长、滑动时长,生成一个窗口的DStream。

1.2.15 reduceByWindow

 /**

  * Return a new DStream in which each RDD hasa single element generated by reducing all

  * elements in a sliding window over thisDStream.

  * @param reduceFunc associativereduce function

  * @param windowDuration width of thewindow; must be a multiple of this DStream's

  *                       batching interval

  * @paramslideDuration sliding interval of thewindow (i.e., the interval after which

  *                       the new DStream willgenerate RDDs); must be a multiple of this

  *                       DStream's batchinginterval

  */

 def reduceByWindow(

     reduceFunc: (T, T) => T,

     windowDuration: Duration,

     slideDuration: Duration

   ): DStream[T] = {

   this.reduce(reduceFunc).window(windowDuration,slideDuration).reduce(reduceFunc)

 }

 

 /**

  * Return a new DStream in which each RDD hasa single element generated by reducing all

  * elements in a sliding window over thisDStream. However, the reduction is done incrementally

  * using the old window's reduced value :

  *  1.reduce the new values that entered the window (e.g., adding new counts)

  *  2."inverse reduce" the old values that left the window (e.g.,subtracting old counts)

  * This is more efficient than reduceByWindow without "inversereduce" function.

  * However, it is applicable to only "invertible reduce functions".

  * @param reduceFunc associativereduce function

  * @param invReduceFunc inverse reducefunction

  * @param windowDuration width of thewindow; must be a multiple of this DStream's

  *                       batching interval

  * @param slideDuration  sliding interval of the window (i.e., theinterval after which

  *                       the new DStream willgenerate RDDs); must be a multiple of this

  *                       DStream's batchinginterval

  */

 defreduceByWindow(

     reduceFunc:(T, T) => T,

     invReduceFunc: (T, T) => T,

     windowDuration: Duration,

     slideDuration: Duration

   ): DStream[T] = {

     this.map(x=> (1, x))

         .reduceByKeyAndWindow(reduceFunc,invReduceFunc, windowDuration, slideDuration,1)

         .map(_._2)

 }

 

reduceByWindow操作,对窗口进行reduceFunc操作。

1.2.16 countByWindow

 /**

  * Return a new DStream in which each RDD hasa single element generated by counting the number

  * of elements in a sliding window over thisDStream. Hash partitioning is used to generate

  * the RDDs with Spark's default number ofpartitions.

  * @param windowDuration width of thewindow; must be a multiple of this DStream's

  *                       batching interval

  * @param slideDuration  sliding interval of the window (i.e., theinterval after which

  *                       the new DStream willgenerate RDDs); must be a multiple of this

  *                       DStream's batchinginterval

  */

 defcountByWindow(windowDuration:Duration, slideDuration: Duration): DStream[Long] = {

   this.map(_=>1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration)

 }

countByWindow操作,对窗口进行count操作。

1.2.17countByValueAndWindow

 /**

  * Return a new DStream in which each RDDcontains the count of distinct elements in

  * RDDs in a sliding window over thisDStream. Hash partitioning is used to generate

  * the RDDs with `numPartitions` partitions(Spark's default number of partitions if

  * `numPartitions` not specified).

  * @param windowDuration width of thewindow; must be a multiple of this DStream's

  *                       batching interval

  * @param slideDuration  sliding interval of the window (i.e., theinterval after which

  *                       the new DStream willgenerate RDDs); must be a multiple of this

  *                       DStream's batchinginterval

  * @param numPartitions  number of partitions of each RDD in the newDStream.

  */

 defcountByValueAndWindow(

     windowDuration: Duration,

     slideDuration: Duration,

     numPartitions: Int =ssc.sc.defaultParallelism)

     (implicitord: Ordering[T] = null)

     : DStream[(T, Long)] =

 {

   this.map(x=> (x, 1L)).reduceByKeyAndWindow(

     (x: Long, y: Long) => x + y,

     (x: Long, y: Long) => x - y,

     windowDuration,

     slideDuration,

     numPartitions,

     (x: (T, Long)) => x._2 != 0L

   )

 }

countByValueAndWindow操作,对窗口进行countByValue操作。

1.2.18 union

 /**

  * Return a new DStream by unifying data ofanother DStream with this DStream.

  * @paramthat Another DStream having the same slideDuration as this DStream.

  */

 defunion(that:DStream[T]): DStream[T] =new UnionDStream[T](Array(this, that))

 

 /**

  * Return all the RDDs defined by theInterval object (both end times included)

  */

 def slice(interval:Interval): Seq[RDD[T]] = {

   slice(interval.beginTime, interval.endTime)

 }

union操作,对DStream和其它DStream进行合并操作。

1.2.19 slice

 /**

  * Return all the RDDs between 'fromTime' to'toTime' (both included)

  */

 defslice(fromTime:Time, toTime: Time): Seq[RDD[T]] = {

   if(!isInitialized) {

     thrownew SparkException(this + " has not beeninitialized")

   }

   if(!(fromTime - zeroTime).isMultipleOf(slideDuration)) {

     logWarning("fromTime (" + fromTime + ") is not amultiple of slideDuration ("

       + slideDuration + ")")

   }

   if(!(toTime - zeroTime).isMultipleOf(slideDuration)) {

     logWarning("toTime (" + fromTime + ") is not amultiple of slideDuration ("

       + slideDuration + ")")

   }

   valalignedToTime = toTime.floor(slideDuration)

   valalignedFromTime = fromTime.floor(slideDuration)

 

   logInfo("Slicing from " + fromTime + " to " + toTime +

     " (aligned to " + alignedFromTime + " and " + alignedToTime + ")")

 

   alignedFromTime.to(alignedToTime,slideDuration).flatMap(time => {

     if(time >= zeroTime) getOrCompute(time) elseNone

   })

 }

slice操作,根据时间间隔,取DStream中的每个RDD序列,生成一个RDD。

1.2.20saveAsObjectFiles

 /**

  * Save each RDD in this DStream as aSequence file of serialized objects.

  * The file name at each batch interval isgenerated based on `prefix` and

  * `suffix`:"prefix-TIME_IN_MS.suffix".

  */

 defsaveAsObjectFiles(prefix: String, suffix: String = ""){

   valsaveFunc = (rdd: RDD[T], time: Time) => {

     valfile = rddToFileName(prefix, suffix, time)

     rdd.saveAsObjectFile(file)

   }

   this.foreachRDD(saveFunc)

 }

saveAsObjectFiles操作,输出操作,对DStream中的每个RDD输出为序列化文件格式。

1.2.21 saveAsTextFiles

 /**

  * Save each RDD in this DStreamasat text file, using string representation

  * of elements. The file name at each batchinterval is generated based on

  * `prefix` and `suffix`:"prefix-TIME_IN_MS.suffix".

  */

 defsaveAsTextFiles(prefix:String, suffix: String ="") {

   valsaveFunc = (rdd: RDD[T], time: Time) => {

     valfile = rddToFileName(prefix, suffix, time)

     rdd.saveAsTextFile(file)

   }

   this.foreachRDD(saveFunc)

 }

 

 /**

  * Register this streaming as an outputstream. This would ensure that RDDs of this

  * DStream will be generated.

  */

 private[streaming]defregister(): DStream[T] = {

   ssc.graph.addOutputStream(this)

   this

 }

}

saveAsTextFiles操作,输出操作,对DStream中的每个RDD输出为文本格式。

 

 

转载请注明出处:

http://blog.csdn.net/sunbow0/article/details/43091247

posted on 2015-04-04 10:15  duanxz  阅读(1598)  评论(0编辑  收藏  举报