特征选择实践

前言

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。特征工程的目的是最大限度地从原始数据中提取特征以供算法和模型使用。本文主要关注于常用的特征选择方法

过采样(Over-sampling)

针对不平衡数据, 最简单的一种方法就是生成少数类的样本, 这其中最基本的一种方法就是: 从少数类的样本中进行随机采样来增加新的样本, 可以使用RandomOverSampler 函数实现上述的功能

from sklearn.datasets import make_classification
from collections import Counter
X, y = make_classification(n_samples=5000, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=3,
                           n_clusters_per_class=1,
                           weights=[0.01, 0.05, 0.94],
                           class_sep=0.8, random_state=0)
Counter(y)
Out[10]: Counter({0: 64, 1: 262, 2: 4674})

from imblearn.over_sampling import RandomOverSampler

ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_sample(X, y)


sorted(Counter(y_resampled).items())
Out[13]:
[(0, 4674), (1, 4674), (2, 4674)]

特征处理

标准化

StandardScaler

公式为:(X-mean)/std 计算时对每个属性/每列分别进行。
将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。

>>> from sklearn.preprocessing import StandardScaler
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> print(scaler.mean_)
[0.5 0.5]
>>> print(scaler.std_)
[0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
 [-1. -1.]
 [ 1.  1.]
 [ 1.  1.]]

RobustScaler

如果数据有离群点,上述StandardScaler效果可能不好,这种情况可以使用RobustScaler,它有对数据中心化和数据的缩放鲁棒性更强的参数
RobustScaler根据分位数范围(默认为IQR: IQR是第1四分位数和第3个四分位数之间的范围。)删除中位数并缩放数据。

>>> from sklearn.preprocessing import RobustScaler
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> transformer = RobustScaler().fit(X)
>>> transformer
RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
       with_scaling=True)
>>> transformer.transform(X)
array([[ 0. , -2. ,  0. ],
       [-1. ,  0. ,  0.4],
       [ 1. ,  0. , -1.6]])

特征选择

# Defining the ranked dictionary, the coefficients are normalized.
def rank_to_dict(ranks, names, order=1):
    minmax = MinMaxScaler()
    ranks = minmax.fit_transform(order*np.array([ranks]).T).T[0]
    ranks = map(lambda x: round(x, 2), ranks)
    return dict(zip(names, ranks))

iv统计

# Initialize a dictionary 
ranks = {}
X=X_res
Y=y_res
names=Xtrain.columns

#information Value Predictive Power 
#• < 0.02 useless for prediction 
#•0.02 to 0.1 Weak predictor 
#•0.1 to 0.3 Medium predictor 
#•0.3 to 0.5 Strong predictor 
#• > 0.5 Suspicious or too good to be true

print ("start iv")
import information_value
woe=information_value.WOE()
res_woe,res_iv=woe.woe(X,Y)
ranks["IV"] = rank_to_dict(np.abs(res_iv), names)
pickle.dump(ranks, open(folder + 'ranks', 'wb'))

LinearRegression

### Linear Modeling ###
print ("start lr")
### Simple Linear Regression ###
from sklearn.linear_model import LinearRegression
lr = LinearRegression(normalize=True)
lr.fit(X_res_std, Y)
ranks["LR"] = rank_to_dict(np.abs(lr.coef_), names)

Ridge Regression

### Ridge Regression ###
from sklearn.linear_model import Ridge
ridge = Ridge(alpha=7)
ridge.fit(X_res_std, Y)
ranks["Ridge"] = rank_to_dict(np.abs(ridge.coef_), names)
pickle.dump(ranks, open(folder + 'ranks', 'wb'))

Lasso Regression based on AIC

### Lasso Regression based on AIC ###
from sklearn.linear_model import LassoLarsIC
lasso_aic = LassoLarsIC(criterion='aic',  max_iter=50000)
lasso_aic.fit(X_res_std, Y)
ranks["Lasso_aic"] = rank_to_dict(np.abs(lasso_aic.coef_), names)

Lasso Regression based on BIC

### Lasso Regression based on BIC ###

lasso_bic = LassoLarsIC(criterion='bic', max_iter=50000)
lasso_bic.fit(X_res_std, Y)
ranks["Lasso_bic"] = rank_to_dict(np.abs(lasso_bic.coef_), names)
pickle.dump(ranks, open(folder + 'ranks', 'wb'))

RandomForestClassifier

### Random Forest ###
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100)
rf.fit(X,Y)
ranks["RF"] = rank_to_dict(rf.feature_importances_, names)
pickle.dump(ranks, open(folder + 'ranks', 'wb'))

ExtraTreesClassifier

### Extra Trees ###
from sklearn.ensemble import ExtraTreesClassifier
forest = ExtraTreesClassifier(n_estimators=100,
                              random_state=0)

forest.fit(X,Y)
ranks["ERT"] = rank_to_dict(forest.feature_importances_,names)
pickle.dump(ranks, open(folder + 'ranks', 'wb'))

f_classif

### Correlation ###
from sklearn.feature_selection import f_classif
f, pval  = f_classif(X, Y, center=True)
ranks["Corr"] = rank_to_dict(f, names)
pickle.dump(ranks, open(folder + 'ranks', 'wb'))

chi2

### chi2 ###
#c,p = chi2(X,Y)
#ranks["chi2"] = rank_to_dict(c,names)

均值

### Mean Calculation ###

r = {}
for name in names:
    r[name] = round(np.mean([ranks[method][name] for method in ranks.keys()]), 2)

reference

posted @ 2019-05-05 18:05  段星星  阅读(704)  评论(0编辑  收藏  举报