reduce端join算法实现
1、需求:
订单数据表t_order:
id |
date |
pid |
amount |
1001 |
20150710 |
P0001 |
2 |
1002 |
20150710 |
P0001 |
3 |
1002 |
20150710 |
P0002 |
3 |
商品信息表t_product
id |
pname |
category_id |
price |
P0001 |
小米5 |
1000 |
2 |
P0002 |
锤子T1 |
1000 |
3 |
假如数据量巨大,两表的数据是以文件的形式存储在HDFS中,需要用mapreduce程序来实现一下SQL查询运算:
select a.id,a.date,b.name,b.category_id,b.price from t_order a join t_product b on a.pid = b.id
2、实现机制:
通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联
public class OrderJoin { static class OrderJoinMapper extends Mapper<LongWritable, Text, Text, OrderJoinBean> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 拿到一行数据,并且要分辨出这行数据所属的文件 String line = value.toString(); String[] fields = line.split("\t"); // 拿到itemid String itemid = fields[0]; // 获取到这一行所在的文件名(通过inpusplit) String name = "你拿到的文件名"; // 根据文件名,切分出各字段(如果是a,切分出两个字段,如果是b,切分出3个字段) OrderJoinBean bean = new OrderJoinBean(); bean.set(null, null, null, null, null); context.write(new Text(itemid), bean); } } static class OrderJoinReducer extends Reducer<Text, OrderJoinBean, OrderJoinBean, NullWritable> { @Override protected void reduce(Text key, Iterable<OrderJoinBean> beans, Context context) throws IOException, InterruptedException { //拿到的key是某一个itemid,比如1000 //拿到的beans是来自于两类文件的bean // {1000,amount} {1000,amount} {1000,amount} --- {1000,price,name} //将来自于b文件的bean里面的字段,跟来自于a的所有bean进行字段拼接并输出 } } }
缺点:这种方式中,join的操作是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜
解决方案: map端join实现方式
1、原理阐述
适用于关联表中有小表的情形;
可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度
2、实现示例
--先在mapper类中预先定义好小表,进行join
--引入实际场景中的解决方案:一次加载数据库或者用distributedcache
public class TestDistributedCache { static class TestDistributedCacheMapper extends Mapper<LongWritable, Text, Text, Text>{ FileReader in = null; BufferedReader reader = null; HashMap<String,String> b_tab = new HashMap<String, String>(); String localpath =null; String uirpath = null; //是在map任务初始化的时候调用一次 @Override protected void setup(Context context) throws IOException, InterruptedException { //通过这几句代码可以获取到cache file的本地绝对路径,测试验证用 Path[] files = context.getLocalCacheFiles(); localpath = files[0].toString(); URI[] cacheFiles = context.getCacheFiles(); //缓存文件的用法——直接用本地IO来读取 //这里读的数据是map task所在机器本地工作目录中的一个小文件 in = new FileReader("b.txt"); reader =new BufferedReader(in); String line =null; while(null!=(line=reader.readLine())){ String[] fields = line.split(","); b_tab.put(fields[0],fields[1]); } IOUtils.closeStream(reader); IOUtils.closeStream(in); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //这里读的是这个map task所负责的那一个切片数据(在hdfs上) String[] fields = value.toString().split("\t"); String a_itemid = fields[0]; String a_amount = fields[1]; String b_name = b_tab.get(a_itemid); // 输出结果 1001 98.9 banan context.write(new Text(a_itemid), new Text(a_amount + "\t" + ":" + localpath + "\t" +b_name )); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(TestDistributedCache.class); job.setMapperClass(TestDistributedCacheMapper.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); //这里是我们正常的需要处理的数据所在路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); //不需要reducer job.setNumReduceTasks(0); //分发一个文件到task进程的工作目录 job.addCacheFile(new URI("hdfs://hadoop-server01:9000/cachefile/b.txt")); //分发一个归档文件到task进程的工作目录 // job.addArchiveToClassPath(archive); //分发jar包到task节点的classpath下 // job.addFileToClassPath(jarfile); job.waitForCompletion(true); } }
web日志预处理
1、需求:
对web访问日志中的各字段识别切分
去除日志中不合法的记录
根据KPI统计需求,生成各类访问请求过滤数据
2、实现代码:
a) 定义一个bean,用来记录日志数据中的各数据字段
public class WebLogBean { private String remote_addr;// 记录客户端的ip地址 private String remote_user;// 记录客户端用户名称,忽略属性"-" private String time_local;// 记录访问时间与时区 private String request;// 记录请求的url与http协议 private String status;// 记录请求状态;成功是200 private String body_bytes_sent;// 记录发送给客户端文件主体内容大小 private String http_referer;// 用来记录从那个页面链接访问过来的 private String http_user_agent;// 记录客户浏览器的相关信息 private boolean valid = true;// 判断数据是否合法 public String getRemote_addr() { return remote_addr; } public void setRemote_addr(String remote_addr) { this.remote_addr = remote_addr; } public String getRemote_user() { return remote_user; } public void setRemote_user(String remote_user) { this.remote_user = remote_user; } public String getTime_local() { return time_local; } public void setTime_local(String time_local) { this.time_local = time_local; } public String getRequest() { return request; } public void setRequest(String request) { this.request = request; } public String getStatus() { return status; } public void setStatus(String status) { this.status = status; } public String getBody_bytes_sent() { return body_bytes_sent; } public void setBody_bytes_sent(String body_bytes_sent) { this.body_bytes_sent = body_bytes_sent; } public String getHttp_referer() { return http_referer; } public void setHttp_referer(String http_referer) { this.http_referer = http_referer; } public String getHttp_user_agent() { return http_user_agent; } public void setHttp_user_agent(String http_user_agent) { this.http_user_agent = http_user_agent; } public boolean isValid() { return valid; } public void setValid(boolean valid) { this.valid = valid; } @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append(this.valid); sb.append("\001").append(this.remote_addr); sb.append("\001").append(this.remote_user); sb.append("\001").append(this.time_local); sb.append("\001").append(this.request); sb.append("\001").append(this.status); sb.append("\001").append(this.body_bytes_sent); sb.append("\001").append(this.http_referer); sb.append("\001").append(this.http_user_agent); return sb.toString(); } }
b)定义一个parser用来解析过滤web访问日志原始记录
public class WebLogParser { public static WebLogBean parser(String line) { WebLogBean webLogBean = new WebLogBean(); String[] arr = line.split(" "); if (arr.length > 11) { webLogBean.setRemote_addr(arr[0]); webLogBean.setRemote_user(arr[1]); webLogBean.setTime_local(arr[3].substring(1)); webLogBean.setRequest(arr[6]); webLogBean.setStatus(arr[8]); webLogBean.setBody_bytes_sent(arr[9]); webLogBean.setHttp_referer(arr[10]); if (arr.length > 12) { webLogBean.setHttp_user_agent(arr[11] + " " + arr[12]); } else { webLogBean.setHttp_user_agent(arr[11]); } if (Integer.parseInt(webLogBean.getStatus()) >= 400) {// 大于400,HTTP错误 webLogBean.setValid(false); } } else { webLogBean.setValid(false); } return webLogBean; } public static String parserTime(String time) { time.replace("/", "-"); return time; } }
c) mapreduce程序
public class WeblogPreProcess { static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> { Text k = new Text(); NullWritable v = NullWritable.get(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); WebLogBean webLogBean = WebLogParser.parser(line); if (!webLogBean.isValid()) return; k.set(webLogBean.toString()); context.write(k, v); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(WeblogPreProcess.class); job.setMapperClass(WeblogPreProcessMapper.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } }
流量统计相关需求
1、对流量日志中的用户统计总上、下行流量技术点: 自定义javaBean用来在mapreduce中充当value
注意: javaBean要实现Writable接口,实现两个方法
//序列化,将对象的字段信息写入输出流 @Override public void write(DataOutput out) throws IOException { out.writeLong(upflow); out.writeLong(downflow); out.writeLong(sumflow); } //反序列化,从输入流中读取各个字段信息 @Override public void readFields(DataInput in) throws IOException { upflow = in.readLong(); downflow = in.readLong(); sumflow = in.readLong(); }
1、统计流量且按照流量大小倒序排序
技术点:这种需求,用一个mapreduce -job 不好实现,需要两个mapreduce -job
第一个job负责流量统计,跟上题相同
第二个job读入第一个job的输出,然后做排序
要将flowBean作为map的key输出,这样mapreduce就会自动排序 此时,flowBean要实现接口WritableComparable 要实现其中的compareTo()方法,方法中,我们可以定义倒序比较的逻辑
1、统计流量且按照手机号的归属地,将结果数据输出到不同的省份文件中技术点:自定义Partitioner
@Override public int getPartition(Text key, FlowBean value, int numPartitions) { String prefix = key.toString().substring(0,3); Integer partNum = pmap.get(prefix); return (partNum==null?4:partNum); }
自定义partition后,要根据自定义partitioner的逻辑设置相应数量的reduce task
job.setNumReduceTasks(5); |
注意:如果reduceTask的数量>= getPartition的结果数 ,则会多产生几个空的输出文件part-r-000xx
如果 1<reduceTask的数量<getPartition的结果数 ,则有一部分分区数据无处安放,会Exception!!!
如果 reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000
社交粉丝数据分析
以下是qq的好友列表数据,冒号前是一个用,冒号后是该用户的所有好友(数据中的好友关系是单向的)
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
解题思路:
求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
解题思路:
第一步 map 读一行 A:B,C,D,F,E,O 输出 <B,A><C,A><D,A><F,A><E,A><O,A> 在读一行 B:A,C,E,K 输出 <A,B><C,B><E,B><K,B>
REDUCE 拿到的数据比如<C,A><C,B><C,E><C,F><C,G>...... 输出: <A-B,C> <A-E,C> <A-F,C> <A-G,C> <B-E,C> <B-F,C>.....
第二步 map 读入一行<A-B,C> 直接输出<A-B,C>
reduce 读入数据 <A-B,C><A-B,F><A-B,G>....... 输出: A-B C,F,G,..... |
package cn.itcast.bigdata.mr.fensi; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SharedFriendsStepOne { static class SharedFriendsStepOneMapper extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // A:B,C,D,F,E,O String line = value.toString(); String[] person_friends = line.split(":"); String person = person_friends[0]; String friends = person_friends[1]; for (String friend : friends.split(",")) { // 输出<好友,人> context.write(new Text(friend), new Text(person)); } } } static class SharedFriendsStepOneReducer extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text friend, Iterable<Text> persons, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); for (Text person : persons) { sb.append(person).append(","); } context.write(friend, new Text(sb.toString())); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SharedFriendsStepOne.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SharedFriendsStepOneMapper.class); job.setReducerClass(SharedFriendsStepOneReducer.class); FileInputFormat.setInputPaths(job, new Path("D:/srcdata/friends")); FileOutputFormat.setOutputPath(job, new Path("D:/temp/out")); job.waitForCompletion(true); } }
package cn.itcast.bigdata.mr.fensi; import java.io.IOException; import java.util.Arrays; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SharedFriendsStepTwo { static class SharedFriendsStepTwoMapper extends Mapper<LongWritable, Text, Text, Text> { // 拿到的数据是上一个步骤的输出结果 // A I,K,C,B,G,F,H,O,D, // 友 人,人,人 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] friend_persons = line.split("\t"); String friend = friend_persons[0]; String[] persons = friend_persons[1].split(","); Arrays.sort(persons); for (int i = 0; i < persons.length - 1; i++) { for (int j = i + 1; j < persons.length; j++) { // 发出 <人-人,好友> ,这样,相同的“人-人”对的所有好友就会到同1个reduce中去 context.write(new Text(persons[i] + "-" + persons[j]), new Text(friend)); } } } } static class SharedFriendsStepTwoReducer extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text person_person, Iterable<Text> friends, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); for (Text friend : friends) { sb.append(friend).append(" "); } context.write(person_person, new Text(sb.toString())); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SharedFriendsStepTwo.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SharedFriendsStepTwoMapper.class); job.setReducerClass(SharedFriendsStepTwoReducer.class); FileInputFormat.setInputPaths(job, new Path("D:/temp/out/part-r-00000")); FileOutputFormat.setOutputPath(job, new Path("D:/temp/out2")); job.waitForCompletion(true); } }