卡特兰数

1.通项公式:h(n)=C(n,2n)/(n+1)=(2n)!/((n!)*(n+1)!) = C(n, 2n) - C(n +1, 2n);

2.递推公式:h(n)=((4*n-2)/(n+1))*h(n-1);

                     h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0).

3.前几项为:h(0)=1,h(1)=1,h(2)=2,h(3)=5,h(4)=14,h(5)=42,......

4.应用例题:

例1:

2n个人围成一个圆圈,求两两相互握手并且不交叉的所有握手方式。
解:这个是卡特兰数的一个例子,设2n个人一共有h(n)种,那么现在第一个人可以和第2,4,6,。。。,2(n-1),2n,即必须保证和他握手的那个人两边是偶数,即为:h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)*h0=(4*n-2)/(n+1) *h(n-1),h(0)=1,h(1)=1.通项公式:h(n)=(2n)!/((n!)*(n+1)!)但是这个题目是大数,所以必须采用数组模拟乘除法.

 

例2:

求出栈序列,比如1,2,3,出栈序列为3 2 1,1 2 3,1 3 2,2 1 3,2 3 1,一共5种

第一种思路:

我们把入栈看做1,出栈看做0,那么入栈出栈看做一系列的1010。。。,但是必须保证从左往右看的时候1必须多余0,这个是卡塔兰数的第二个应用,种数为:C(n,2n)-C(n+1,2n).粗略这样理解:我们从2n个位置中选出n个来存放1,方法数为C(n,2n),减去不满足的情况。不合法的情况:我们在2n个位置放n+1个0,n-1个1,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数,即C(n+1,2n)。

比如:对于数列10101001010100, 在第7个位置上首先出现了0比1多的情况,而在后面的数列中0的总计数还是比1的总计数多1(n+1个0, n-1个1)。如果把后面数列的0和1互换,那么整个数列就能够保证0和1的计数是相等的。同时对应了一种不符合要求的排列方法:10101000101011.

所以总的方案数为:h(n)=C(n,2n)-C(n+1,2n).

第二种思路:

这种方法直接来源于卡特兰数3的递推公式:h(n) = h(0) * h(n- 1) + h(1) * h(n - 2) + ... + h(n - 1) * h(0)

令f(n)为n个字符的出栈序列的方法数

假设在出栈序列中,在数1在第k个位置出栈,则之前有k-1个字符已经出栈,后面还有n-k个字符未出栈,那么在这种情况下出栈方案数为f(k-1)*f(n-k), k = 1, 2, 3, ...,n

f(0) = 1, f(1) = 1

那么f(n) = f(0) * f(n - 1) + f(1) * f(n - 2) + ... + f(n - 1) * f(0) = h(n)

第三种思路:

使用折现法,这种方法与从(0, 0)到坐标(n ,n)不通过对角线的方法数有异曲同工之妙,具体见:http://blog.sina.com.cn/s/blog_6917f47301010cno.html

 例3:

给出一个棋盘n*n,求从左下角到右上角的不经过对角线的所有走法,这个经过分析也是卡特兰数。我们把往右走看做1,把往上走看做0,那么从左向右看做一系列的101100.。。,和那个求出栈序列的就是一个问题了,即0的个数不能超过1,由于上半角和下半角一样,所以求出来卡特兰数*2就是我们的答案了。

注:从(0,0)到(n, n)不接触对角线上的点和从(0, 0)到(n, n)不穿过对角线上的点的方法数是不同的。后者可看作n个字符的出栈序列,前者可看作在先在栈中加入一个字符,之后在最后的操作之前栈底不能为空,所以方法数为h(n - 1)。

同样可以使用对称的方法求解:

对于不能接触对角线的方法数的解法为:由于不接触对角线,那么第一步一定走向(1, 0), 倒数第二步的位置一定是(n, n - 1)。那么总的方法数为:C(n - 1, 2n-2)。之后需要减去接触对角线的方法数:如果我们从(0, 1)出发,到达(n, n -1)的路径一定会接触对角线,而这样的路径和从(1, 0)到(n, n -1)不合法的路径是一一对应的的(可以把它从最后离开对角线的点到(1, 0)做一个关于y=x的对称),那么总的方法数为2 * (C(n- 1, 2n - 2) - C(n, 2n - 2)) = 2 * h(n - 1)种方法

对于可以接触但不能穿过对角线的解法为:不能穿过y=x,等价与不能接触y=x+1,所以,从(0, 0) 到(n, n)的总方法数为C(n, 2n),之后减去不符合要求的方法数。将(0, 0)关于y=x+1做对称可得到点(-1, 1),从(-1, 1)到点(n, n)必定接触y=x+1,方法数为C(2n - 1, 2n)。所以符合要求的方法数为:C(n, 2n) - C(2n - 1,2n) = C(n, 2n) - C(2n + 1,2n) = h(n)

 例4:

给出n个点,求组成二叉树的所有种数,2个点组成2种二叉树,3个点组成5种二叉树。。。
这个也是卡塔兰数的一个应用,和1134类似,我们去除一个点作为根节点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +...+ h(n-1)h(0)=h(n))。

例5:

买票问题:有m个人手里拿的是50元的,n个人拿的是100元的,问使买票过程不中断的排队方式。我们知道如果前面出现拿50的人小于拿100的人,那么肯定出现找不开的情况,我们把拿50的看做0,拿100的看做1,所以从左往右看的时候0的个数必须大于1。

我们知道总的情况为:C(n,m+n),需要求出不合法的序列个数,还是之前的思路,存在一个奇数位置2*k+1,使得0出现k此1出现k+1次,后面会有(m-k)个0,(n-k-1)个1,我们将01交换,即这个序列共有m+1个1,n-1个0,这个序列的所有排序情况就对应了一种不合法的序列情况(可以这样理解:由于m+1>n-1,那么必然在某一个位置出现1的个数大于0的个数,这样在这个位置往后的01我们交换回来,就对于了一种不合法的序列了),即C(m+1,m+n),最后的结果为:ans=C(n,m+n)-C(m+1,m+n),其中(m>=n);当m<n时买票过程必然中断。

 

5其他应用场景:

a.括号化问题。
  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n - 1)种)
b.出栈次序问题。
  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。

c.将多边行划分为三角形问题。
  (1)将一个凸多边形区域分成三角形区域的方法数?
  (2)类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  (3)类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?
d.给顶节点组成二叉树的问题。
  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是

      h(0)*h(n-1) + h(2)*h(n-2) +  + h(n-1)h(0)=h(n))(能构成h(N)个)。

转载自:(数论二hdoj卡特兰数

posted @ 2018-09-09 14:22  康托漫步  阅读(277)  评论(0编辑  收藏  举报